At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the periodic payment that will amount to a future value of [tex]$21,000 when an interest rate of 6% (compounded annually) is applied over 12 consecutive years, we can proceed as follows:
### Step-by-Step Solution:
1. Understand the Terms and the Formula:
- Future Value (FV) = $[/tex]21,000
- Interest Rate (r) = 6% or 0.06 (as a decimal)
- Number of Periods (n) = 12 years
We will use the formula for the future value of an ordinary annuity:
[tex]\[ FV = PMT \times \left[\frac{{(1 + r)^n - 1}}{r}\right] \][/tex]
Where:
- [tex]\( FV \)[/tex] is the future value.
- [tex]\( PMT \)[/tex] is the periodic payment.
- [tex]\( r \)[/tex] is the interest rate per period.
- [tex]\( n \)[/tex] is the number of periods.
2. Rearrange the Formula to Solve for [tex]\( PMT \)[/tex]:
We need to solve for the periodic payment [tex]\( PMT \)[/tex]:
[tex]\[ PMT = \frac{FV}{\left[\frac{{(1 + r)^n - 1}}{r}\right]} \][/tex]
3. Substitute the Known Values:
- [tex]\( FV = 21000 \)[/tex]
- [tex]\( r = 0.06 \)[/tex]
- [tex]\( n = 12 \)[/tex]
So, the rearranged formula becomes:
[tex]\[ PMT = \frac{21000}{\left[\frac{{(1 + 0.06)^{12} - 1}}{0.06}\right]} \][/tex]
4. Calculate the Denominator:
Let's break this down:
- Calculate [tex]\( (1 + 0.06)^{12} \)[/tex]:
[tex]\[ (1 + 0.06)^{12} = 1.06^{12} \][/tex]
- Subtract 1 from this result:
[tex]\[ 1.06^{12} - 1 \][/tex]
- Divide by the interest rate [tex]\( r = 0.06 \)[/tex]:
[tex]\[ \frac{1.06^{12} - 1}{0.06} \][/tex]
5. Complete the Calculation:
After calculating the entire expression in the denominator, plug back into the formula:
[tex]\[ PMT = \frac{21000}{\left[\frac{(1 + 0.06)^{12} - 1}{0.06}\right]} \][/tex]
6. Round the Result:
Ensure the final answer is rounded to the nearest cent.
The periodic payment will amount to approximately $1244.82.
- Interest Rate (r) = 6% or 0.06 (as a decimal)
- Number of Periods (n) = 12 years
We will use the formula for the future value of an ordinary annuity:
[tex]\[ FV = PMT \times \left[\frac{{(1 + r)^n - 1}}{r}\right] \][/tex]
Where:
- [tex]\( FV \)[/tex] is the future value.
- [tex]\( PMT \)[/tex] is the periodic payment.
- [tex]\( r \)[/tex] is the interest rate per period.
- [tex]\( n \)[/tex] is the number of periods.
2. Rearrange the Formula to Solve for [tex]\( PMT \)[/tex]:
We need to solve for the periodic payment [tex]\( PMT \)[/tex]:
[tex]\[ PMT = \frac{FV}{\left[\frac{{(1 + r)^n - 1}}{r}\right]} \][/tex]
3. Substitute the Known Values:
- [tex]\( FV = 21000 \)[/tex]
- [tex]\( r = 0.06 \)[/tex]
- [tex]\( n = 12 \)[/tex]
So, the rearranged formula becomes:
[tex]\[ PMT = \frac{21000}{\left[\frac{{(1 + 0.06)^{12} - 1}}{0.06}\right]} \][/tex]
4. Calculate the Denominator:
Let's break this down:
- Calculate [tex]\( (1 + 0.06)^{12} \)[/tex]:
[tex]\[ (1 + 0.06)^{12} = 1.06^{12} \][/tex]
- Subtract 1 from this result:
[tex]\[ 1.06^{12} - 1 \][/tex]
- Divide by the interest rate [tex]\( r = 0.06 \)[/tex]:
[tex]\[ \frac{1.06^{12} - 1}{0.06} \][/tex]
5. Complete the Calculation:
After calculating the entire expression in the denominator, plug back into the formula:
[tex]\[ PMT = \frac{21000}{\left[\frac{(1 + 0.06)^{12} - 1}{0.06}\right]} \][/tex]
6. Round the Result:
Ensure the final answer is rounded to the nearest cent.
The periodic payment will amount to approximately $1244.82.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.