Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the centripetal acceleration of the race car, we'll use the concept of centripetal force and acceleration in circular motion. Centripetal acceleration is given by the formula:
[tex]\[ a = \frac{v^2}{r} \][/tex]
where:
- [tex]\( v \)[/tex] is the velocity of the object.
- [tex]\( r \)[/tex] is the radius of the circular path.
Given:
- The velocity ([tex]\( v \)[/tex]) of the race car is [tex]\( 135 \)[/tex] miles per hour.
- The radius ([tex]\( r \)[/tex]) of the track is [tex]\( 0.450 \)[/tex] miles.
Now, we'll substitute the given values into the formula to find the centripetal acceleration.
[tex]\[ a = \frac{(135 \, \text{mi/hr})^2}{0.450 \, \text{mi}} \][/tex]
First, we square the velocity:
[tex]\[ (135 \, \text{mi/hr})^2 = 135 \times 135 = 18225 \, \text{(mi/hr)}^2 \][/tex]
Next, we divide this by the radius:
[tex]\[ a = \frac{18225 \, \text{(mi/hr)}^2}{0.450 \, \text{mi}} \][/tex]
Perform the division:
[tex]\[ a = 40500 \, \text{mi/hr}^2 \][/tex]
Thus, the centripetal acceleration of the car is:
[tex]\[ \boxed{40500 \text{ mi/hr}^2} \][/tex]
Comparing with the given options, the correct centripetal acceleration is:
[tex]\[ 40,500 \, \text{mi/hr}^2 \][/tex]
So, the answer is:
[tex]\[ \boxed{40500 \, \text{mi/hr}^2} \][/tex]
[tex]\[ a = \frac{v^2}{r} \][/tex]
where:
- [tex]\( v \)[/tex] is the velocity of the object.
- [tex]\( r \)[/tex] is the radius of the circular path.
Given:
- The velocity ([tex]\( v \)[/tex]) of the race car is [tex]\( 135 \)[/tex] miles per hour.
- The radius ([tex]\( r \)[/tex]) of the track is [tex]\( 0.450 \)[/tex] miles.
Now, we'll substitute the given values into the formula to find the centripetal acceleration.
[tex]\[ a = \frac{(135 \, \text{mi/hr})^2}{0.450 \, \text{mi}} \][/tex]
First, we square the velocity:
[tex]\[ (135 \, \text{mi/hr})^2 = 135 \times 135 = 18225 \, \text{(mi/hr)}^2 \][/tex]
Next, we divide this by the radius:
[tex]\[ a = \frac{18225 \, \text{(mi/hr)}^2}{0.450 \, \text{mi}} \][/tex]
Perform the division:
[tex]\[ a = 40500 \, \text{mi/hr}^2 \][/tex]
Thus, the centripetal acceleration of the car is:
[tex]\[ \boxed{40500 \text{ mi/hr}^2} \][/tex]
Comparing with the given options, the correct centripetal acceleration is:
[tex]\[ 40,500 \, \text{mi/hr}^2 \][/tex]
So, the answer is:
[tex]\[ \boxed{40500 \, \text{mi/hr}^2} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.