Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

What is the domain of the function [tex]f(x)=\frac{2}{5} \sqrt{x}[/tex]?

A. all real numbers

B. all real numbers less than 0

C. all real numbers less than or equal to 0

D. all real numbers greater than or equal to 0


Sagot :

To determine the domain of the function [tex]\( f(x) = \frac{2}{5} \sqrt{x} \)[/tex], we need to consider the properties of the components of the function. The key part to focus on here is the square root function, [tex]\(\sqrt{x}\)[/tex].

1. Square Root Function Analysis: The square root function, [tex]\(\sqrt{x}\)[/tex], is only defined for non-negative values of [tex]\(x\)[/tex]. This means [tex]\(x\)[/tex] must be greater than or equal to 0 for [tex]\(\sqrt{x}\)[/tex] to be real and defined.

2. Function Definition: Since [tex]\(\frac{2}{5}\)[/tex] is just a constant multiplier, it does not affect the domain of [tex]\(\sqrt{x}\)[/tex]. Therefore, the function [tex]\( f(x) = \frac{2}{5} \sqrt{x} \)[/tex] is defined whenever [tex]\(\sqrt{x}\)[/tex] is defined, i.e., for all [tex]\(x\)[/tex] such that [tex]\(x \geq 0\)[/tex].

3. Conclusion: Combining these observations, we see that the function [tex]\( f(x) = \frac{2}{5} \sqrt{x} \)[/tex] is defined for all real numbers [tex]\( x \)[/tex] that are greater than or equal to 0.

Therefore, the domain of the function [tex]\( f(x) = \frac{2}{5} \sqrt{x} \)[/tex] is:

[tex]\(\boxed{\text{all real numbers greater than or equal to 0}}\)[/tex]