Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the range of the function [tex]\( f(x) = \frac{1}{2} \sqrt{x} \)[/tex], let's analyze it step by step:
1. Understanding the function:
The function [tex]\( f(x) \)[/tex] involves the square root of [tex]\( x \)[/tex]. The square root function, [tex]\(\sqrt{x}\)[/tex], is only defined for [tex]\( x \geq 0 \)[/tex] because you cannot take the square root of a negative number within the real number system.
2. Behavior for different values of [tex]\( x \)[/tex]:
- When [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \frac{1}{2} \sqrt{0} = \frac{1}{2} \cdot 0 = 0 \][/tex]
- When [tex]\( x > 0 \)[/tex]:
The value of [tex]\(\sqrt{x}\)[/tex] is positive and thus the value of [tex]\( \frac{1}{2} \sqrt{x} \)[/tex] will also be positive but equal to half of the square root of [tex]\( x \)[/tex].
3. Formulating the range:
- As [tex]\( x \)[/tex] increases from 0 to positive infinity, the value of [tex]\( \sqrt{x} \)[/tex] also increases from 0 to positive infinity.
- Consequently, [tex]\( \frac{1}{2} \sqrt{x} \)[/tex] also increases from 0 to positive infinity.
Therefore, since [tex]\( f(x) \)[/tex] starts at 0 (when [tex]\( x = 0 \)[/tex]) and increases without bound as [tex]\( x \)[/tex] increases, the range of the function [tex]\( f(x) = \frac{1}{2} \sqrt{x} \)[/tex] is all real numbers greater than or equal to 0.
In conclusion, the range of the function [tex]\( f(x) = \frac{1}{2} \sqrt{x} \)[/tex] is:
[tex]\[ \text{all real numbers greater than or equal to 0} \][/tex]
1. Understanding the function:
The function [tex]\( f(x) \)[/tex] involves the square root of [tex]\( x \)[/tex]. The square root function, [tex]\(\sqrt{x}\)[/tex], is only defined for [tex]\( x \geq 0 \)[/tex] because you cannot take the square root of a negative number within the real number system.
2. Behavior for different values of [tex]\( x \)[/tex]:
- When [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \frac{1}{2} \sqrt{0} = \frac{1}{2} \cdot 0 = 0 \][/tex]
- When [tex]\( x > 0 \)[/tex]:
The value of [tex]\(\sqrt{x}\)[/tex] is positive and thus the value of [tex]\( \frac{1}{2} \sqrt{x} \)[/tex] will also be positive but equal to half of the square root of [tex]\( x \)[/tex].
3. Formulating the range:
- As [tex]\( x \)[/tex] increases from 0 to positive infinity, the value of [tex]\( \sqrt{x} \)[/tex] also increases from 0 to positive infinity.
- Consequently, [tex]\( \frac{1}{2} \sqrt{x} \)[/tex] also increases from 0 to positive infinity.
Therefore, since [tex]\( f(x) \)[/tex] starts at 0 (when [tex]\( x = 0 \)[/tex]) and increases without bound as [tex]\( x \)[/tex] increases, the range of the function [tex]\( f(x) = \frac{1}{2} \sqrt{x} \)[/tex] is all real numbers greater than or equal to 0.
In conclusion, the range of the function [tex]\( f(x) = \frac{1}{2} \sqrt{x} \)[/tex] is:
[tex]\[ \text{all real numbers greater than or equal to 0} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.