Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Ask your questions and receive precise answers from experienced professionals across different disciplines. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

(a) Given that [tex]\operatorname{Sin} A = \frac{3}{5}[/tex], find the value of:
(i) [tex]\operatorname{Cos} A[/tex]
(ii) [tex]\frac{\tan A - \operatorname{Sin} A}{1 + 2 \operatorname{Cos} A}[/tex]

(b) A man who is [tex]3 \, \text{m}[/tex] tall stands on a horizontal level ground [tex]20 \, \text{m}[/tex] from the wall of a building. The angle of elevation of the top of the building from his eye level is [tex]27^{\circ}[/tex]. Calculate the height of the building.


Sagot :

Sure! Let's break it down step by step.

### Part (a)

Let's begin by analyzing the given information and solving for the required quantities.

#### (i) Finding [tex]$\cos A$[/tex] given that [tex]$\sin A = \frac{3}{5}$[/tex]

Given:
[tex]\[ \sin A = \frac{3}{5} \][/tex]

We know from trigonometric identities that:
[tex]\[ \sin^2 A + \cos^2 A = 1 \][/tex]

Plugging in the given value of [tex]$\sin A$[/tex]:
[tex]\[ \left(\frac{3}{5}\right)^2 + \cos^2 A = 1 \][/tex]
[tex]\[ \frac{9}{25} + \cos^2 A = 1 \][/tex]
[tex]\[ \cos^2 A = 1 - \frac{9}{25} \][/tex]
[tex]\[ \cos^2 A = \frac{25}{25} - \frac{9}{25} \][/tex]
[tex]\[ \cos^2 A = \frac{16}{25} \][/tex]
[tex]\[ \cos A = \sqrt{\frac{16}{25}} \][/tex]
[tex]\[ \cos A = \frac{4}{5} \][/tex]

Therefore,
[tex]\[ \cos A = 0.8 \][/tex]

#### (ii) Calculating [tex]\(\frac{\tan A - \sin A}{1 + 2 \cos A}\)[/tex]

We also need to find [tex]$\tan A$[/tex] to evaluate the given expression. We know:
[tex]\[ \tan A = \frac{\sin A}{\cos A} \][/tex]

Given:
[tex]\[ \sin A = \frac{3}{5} \][/tex]

From (i):
[tex]\[ \cos A = 0.8 \][/tex]

So:
[tex]\[ \tan A = \frac{\frac{3}{5}}{\frac{4}{5}} \][/tex]
[tex]\[ \tan A = \frac{3}{4} \][/tex]

Now, we plug [tex]$\tan A$[/tex], [tex]$\sin A$[/tex], and [tex]$\cos A$[/tex] into the given expression:
[tex]\[ \frac{\tan A - \sin A}{1 + 2 \cos A} \][/tex]

Which translates to:
[tex]\[ \frac{\frac{3}{4} - \frac{3}{5}}{1 + 2 \times 0.8} \][/tex]
[tex]\[ = \frac{\frac{15 - 12}{20}}{1 + 1.6} \][/tex]
[tex]\[ = \frac{\frac{3}{20}}{2.6} \][/tex]
[tex]\[ = \frac{3}{20 \times 2.6} \][/tex]
[tex]\[ = \frac{3}{52} \][/tex]
[tex]\[ = 0.057692307692307654 \][/tex]

### Part (b)
We now look at the problem involving the height of the building.

We have a man who is [tex]$3 \,m$[/tex] tall, standing [tex]$20 \,m$[/tex] away from the wall of the building, with an angle of elevation to the top of the building of [tex]$27^\circ$[/tex].

Given:
- Height of the man = 3 m
- Distance to the wall = 20 m
- Angle of elevation = [tex]$27^\circ$[/tex]

We can use trigonometric ratios to determine the total height of the building. Using the tangent function:
[tex]\[ \tan (\text{angle}) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]

Let [tex]\( h_b \)[/tex] be the height of the building. Therefore:
[tex]\[ \tan 27^\circ = \frac{h_b - 3}{20} \][/tex]

First, we convert the angle to radians (which is how angles are used in most trigonometric calculations):
[tex]\[ \text{angle in radians} = 27^\circ \approx 0.471239 \text{ radians} \][/tex]

Using the tangent function:
[tex]\[ \tan(27^\circ) = 0.5095254494944298 \][/tex]

Therefore:
[tex]\[ 0.5095254494944298 = \frac{h_b - 3}{20} \][/tex]
[tex]\[ h_b - 3 = 20 \times 0.5095254494944298 \][/tex]
[tex]\[ h_b - 3 = 10.190508989888596 \][/tex]
[tex]\[ h_b = 10.190508989888596 + 3 \][/tex]
[tex]\[ h_b = 13.190508989888576 \][/tex]

Thus, the height of the building is approximately:
[tex]\[ \text{Height of the building} \approx 13.19 \, m \][/tex]