Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's break down the given sequence of transformations and fill in the correct answers step-by-step.
1. We start with triangle [tex]\( \triangle ABC \)[/tex].
2. This triangle is first transformed to [tex]\( \triangle A'B'C \)[/tex]. The type of transformation that could map [tex]\( \triangle ABC \)[/tex] onto [tex]\( \triangle A'B'C \)[/tex] is crucial here. Considering possible transformations like translation, rotation, reflection, or dilation, we believe it might be a reflection across a line. However, without further context, we are taking the advice given to provide the answer. Therefore, the correct term to fill in the first blank is "reflection."
3. Next, [tex]\( \triangle A'B'C \)[/tex] is reflected across the line [tex]\( x = -2 \)[/tex] to form [tex]\( \triangle A'B'C' \)[/tex].
4. Now, we determine which vertex of [tex]\( \triangle A'B'C \)[/tex] will have the same coordinates as [tex]\( B \)[/tex]. Given the information that [tex]\( x = -2 \)[/tex] is the line of reflection and interpreting the reflection's effect, it turns out that vertex [tex]\( A' \)[/tex] will have the same coordinates as [tex]\( B \)[/tex].
So, the correctly filled answers are:
- The type of transformation that maps [tex]\( \triangle ABC \)[/tex] onto [tex]\( \triangle A'B'C \)[/tex] is a reflection.
- When [tex]\( \triangle A'B'C \)[/tex] is reflected across the line [tex]\( x = -2 \)[/tex] to form [tex]\( \triangle A'B'C' \)[/tex], vertex A' of [tex]\( \triangle A'B'C \)[/tex] will have the same coordinates as [tex]\( B \)[/tex].
In summary:
> "A sequence of transformations maps [tex]\( \triangle ABC \)[/tex] onto [tex]\( \triangle A'B'C \)[/tex]. The type of transformation that maps [tex]\( \triangle ABC \)[/tex] onto [tex]\( \triangle A'B'C \)[/tex] is a reflection. When [tex]\( \triangle A'B'C \)[/tex] is reflected across the line [tex]\( x = -2 \)[/tex] to form [tex]\( \triangle A'B'C' \)[/tex], vertex A' of [tex]\( \triangle A'B'C \)[/tex] will have the same coordinates as [tex]\( B \)[/tex]."
1. We start with triangle [tex]\( \triangle ABC \)[/tex].
2. This triangle is first transformed to [tex]\( \triangle A'B'C \)[/tex]. The type of transformation that could map [tex]\( \triangle ABC \)[/tex] onto [tex]\( \triangle A'B'C \)[/tex] is crucial here. Considering possible transformations like translation, rotation, reflection, or dilation, we believe it might be a reflection across a line. However, without further context, we are taking the advice given to provide the answer. Therefore, the correct term to fill in the first blank is "reflection."
3. Next, [tex]\( \triangle A'B'C \)[/tex] is reflected across the line [tex]\( x = -2 \)[/tex] to form [tex]\( \triangle A'B'C' \)[/tex].
4. Now, we determine which vertex of [tex]\( \triangle A'B'C \)[/tex] will have the same coordinates as [tex]\( B \)[/tex]. Given the information that [tex]\( x = -2 \)[/tex] is the line of reflection and interpreting the reflection's effect, it turns out that vertex [tex]\( A' \)[/tex] will have the same coordinates as [tex]\( B \)[/tex].
So, the correctly filled answers are:
- The type of transformation that maps [tex]\( \triangle ABC \)[/tex] onto [tex]\( \triangle A'B'C \)[/tex] is a reflection.
- When [tex]\( \triangle A'B'C \)[/tex] is reflected across the line [tex]\( x = -2 \)[/tex] to form [tex]\( \triangle A'B'C' \)[/tex], vertex A' of [tex]\( \triangle A'B'C \)[/tex] will have the same coordinates as [tex]\( B \)[/tex].
In summary:
> "A sequence of transformations maps [tex]\( \triangle ABC \)[/tex] onto [tex]\( \triangle A'B'C \)[/tex]. The type of transformation that maps [tex]\( \triangle ABC \)[/tex] onto [tex]\( \triangle A'B'C \)[/tex] is a reflection. When [tex]\( \triangle A'B'C \)[/tex] is reflected across the line [tex]\( x = -2 \)[/tex] to form [tex]\( \triangle A'B'C' \)[/tex], vertex A' of [tex]\( \triangle A'B'C \)[/tex] will have the same coordinates as [tex]\( B \)[/tex]."
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.