At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
### (a) Finding the Price of the Cake:
Let's denote the original price of the cake as [tex]\( x \)[/tex] Tsh.
1. Set up the problem:
- Amina has Tsh 1800 to spend.
- If the price decreases by Tsh 20, she can buy 3 more cakes.
- With the original price, the number of cakes she can buy is [tex]\( \frac{1800}{x} \)[/tex].
- With the decreased price [tex]\( x - 20 \)[/tex], the number of cakes she can buy is [tex]\( \frac{1800}{x - 20} \)[/tex].
2. Form the equation:
[tex]\[ \frac{1800}{x - 20} = \frac{1800}{x} + 3 \][/tex]
3. Eliminate the fractions:
Multiply through by [tex]\( x(x - 20) \)[/tex]:
[tex]\[ 1800x = 1800(x - 20) + 3x(x - 20) \][/tex]
4. Expand and simplify:
[tex]\[ 1800x = 1800x - 36000 + 3x^2 - 60x \][/tex]
[tex]\[ 0 = 3x^2 - 60x - 36000 \][/tex]
5. Form the quadratic equation:
[tex]\[ 3x^2 - 60x - 36000 = 0 \][/tex]
6. Solve using the quadratic formula:
The quadratic formula is given by [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 3 \)[/tex], [tex]\( b = -60 \)[/tex], and [tex]\( c = -36000 \)[/tex].
[tex]\[ x = \frac{60 \pm \sqrt{3600 + 432000}}{6} \][/tex]
[tex]\[ x = \frac{60 \pm \sqrt{435600}}{6} \][/tex]
[tex]\[ x = \frac{60 \pm 660}{6} \][/tex]
Solving for the two possible values:
[tex]\[ x_1 = \frac{720}{6} = 120 \][/tex]
[tex]\[ x_2 = \frac{-600}{6} = -100 \][/tex]
Since the price of a cake cannot be negative, the valid solution is:
[tex]\[ x = 120 \text{ Tsh} \][/tex]
### (b) Modifying the Rectangular Garden:
Let's denote the length added to the shorter side and reduced from the longer side as [tex]\( y \)[/tex] meters.
1. Set up the problem:
- The original dimensions of the garden are 6 meters by 8 meters.
- Adjust the shorter side to [tex]\( 6 + y \)[/tex] meters.
- Adjust the longer side to [tex]\( 8 - y \)[/tex] meters.
- The new area of the garden is 45 square meters.
2. Form the equation:
[tex]\[ (6 + y)(8 - y) = 45 \][/tex]
3. Expand and simplify:
[tex]\[ 48 - 6y + 8y - y^2 = 45 \][/tex]
[tex]\[ - y^2 + 2y + 3 = 0 \][/tex]
Multiplying through by -1 to make it a standard quadratic equation:
[tex]\[ y^2 - 2y - 3 = 0 \][/tex]
4. Solve using the quadratic formula:
The quadratic formula is given by [tex]\( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = -2 \)[/tex], and [tex]\( c = -3 \)[/tex].
[tex]\[ y = \frac{2 \pm \sqrt{4 + 12}}{2} \][/tex]
[tex]\[ y = \frac{2 \pm \sqrt{16}}{2} \][/tex]
[tex]\[ y = \frac{2 \pm 4}{2} \][/tex]
Solving for the two possible values:
[tex]\[ y_1 = \frac{6}{2} = 3 \][/tex]
[tex]\[ y_2 = \frac{-2}{2} = -1 \][/tex]
Here, [tex]\( y_1 = 3 \)[/tex] meters and [tex]\( y_2 = -1 \)[/tex] meters.
### Final Answers:
1. The price of the cake, [tex]\( x \)[/tex], is 120 Tsh.
2. The length to be added to the shorter side and reduced from the longer side to get an area of 45 square meters is [tex]\( y = 3 \)[/tex] meters or [tex]\( y = -1 \)[/tex] meters.
Let's denote the original price of the cake as [tex]\( x \)[/tex] Tsh.
1. Set up the problem:
- Amina has Tsh 1800 to spend.
- If the price decreases by Tsh 20, she can buy 3 more cakes.
- With the original price, the number of cakes she can buy is [tex]\( \frac{1800}{x} \)[/tex].
- With the decreased price [tex]\( x - 20 \)[/tex], the number of cakes she can buy is [tex]\( \frac{1800}{x - 20} \)[/tex].
2. Form the equation:
[tex]\[ \frac{1800}{x - 20} = \frac{1800}{x} + 3 \][/tex]
3. Eliminate the fractions:
Multiply through by [tex]\( x(x - 20) \)[/tex]:
[tex]\[ 1800x = 1800(x - 20) + 3x(x - 20) \][/tex]
4. Expand and simplify:
[tex]\[ 1800x = 1800x - 36000 + 3x^2 - 60x \][/tex]
[tex]\[ 0 = 3x^2 - 60x - 36000 \][/tex]
5. Form the quadratic equation:
[tex]\[ 3x^2 - 60x - 36000 = 0 \][/tex]
6. Solve using the quadratic formula:
The quadratic formula is given by [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 3 \)[/tex], [tex]\( b = -60 \)[/tex], and [tex]\( c = -36000 \)[/tex].
[tex]\[ x = \frac{60 \pm \sqrt{3600 + 432000}}{6} \][/tex]
[tex]\[ x = \frac{60 \pm \sqrt{435600}}{6} \][/tex]
[tex]\[ x = \frac{60 \pm 660}{6} \][/tex]
Solving for the two possible values:
[tex]\[ x_1 = \frac{720}{6} = 120 \][/tex]
[tex]\[ x_2 = \frac{-600}{6} = -100 \][/tex]
Since the price of a cake cannot be negative, the valid solution is:
[tex]\[ x = 120 \text{ Tsh} \][/tex]
### (b) Modifying the Rectangular Garden:
Let's denote the length added to the shorter side and reduced from the longer side as [tex]\( y \)[/tex] meters.
1. Set up the problem:
- The original dimensions of the garden are 6 meters by 8 meters.
- Adjust the shorter side to [tex]\( 6 + y \)[/tex] meters.
- Adjust the longer side to [tex]\( 8 - y \)[/tex] meters.
- The new area of the garden is 45 square meters.
2. Form the equation:
[tex]\[ (6 + y)(8 - y) = 45 \][/tex]
3. Expand and simplify:
[tex]\[ 48 - 6y + 8y - y^2 = 45 \][/tex]
[tex]\[ - y^2 + 2y + 3 = 0 \][/tex]
Multiplying through by -1 to make it a standard quadratic equation:
[tex]\[ y^2 - 2y - 3 = 0 \][/tex]
4. Solve using the quadratic formula:
The quadratic formula is given by [tex]\( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = -2 \)[/tex], and [tex]\( c = -3 \)[/tex].
[tex]\[ y = \frac{2 \pm \sqrt{4 + 12}}{2} \][/tex]
[tex]\[ y = \frac{2 \pm \sqrt{16}}{2} \][/tex]
[tex]\[ y = \frac{2 \pm 4}{2} \][/tex]
Solving for the two possible values:
[tex]\[ y_1 = \frac{6}{2} = 3 \][/tex]
[tex]\[ y_2 = \frac{-2}{2} = -1 \][/tex]
Here, [tex]\( y_1 = 3 \)[/tex] meters and [tex]\( y_2 = -1 \)[/tex] meters.
### Final Answers:
1. The price of the cake, [tex]\( x \)[/tex], is 120 Tsh.
2. The length to be added to the shorter side and reduced from the longer side to get an area of 45 square meters is [tex]\( y = 3 \)[/tex] meters or [tex]\( y = -1 \)[/tex] meters.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.