Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the parametric equations for the path of the cyclist, let's break down the problem step-by-step:
1. Identify Initial and Final Positions:
- The intersection is at the origin [tex]\((0,0)\)[/tex].
- The start of the bicycle path is 5 miles east of the intersection, so the starting point is [tex]\((5,0)\)[/tex].
- The end of the bicycle path is 8 miles north of the intersection, so the ending point is [tex]\((0,8)\)[/tex].
2. Determine the time required:
- The cyclist rides from the start to the end in 2 hours. Thus, the total time is 2 hours.
3. Derive Parametric Equations:
The parametric equations for a straight-line motion between two points typically take the form:
[tex]\[ x(t) = x_{\text{initial}} + (x_{\text{final}} - x_{\text{initial}}) \frac{t}{T} \][/tex]
[tex]\[ y(t) = y_{\text{initial}} + (y_{\text{final}} - y_{\text{initial}}) \frac{t}{T} \][/tex]
where:
- [tex]\(x_{\text{initial}} = 5\)[/tex]
- [tex]\(y_{\text{initial}} = 0\)[/tex]
- [tex]\(x_{\text{final}} = 0\)[/tex]
- [tex]\(y_{\text{final}} = 8\)[/tex]
- [tex]\(T = 2\)[/tex]
Using these values,
[tex]\[ x(t) = 5 + (0 - 5) \frac{t}{2} \][/tex]
[tex]\[ y(t) = 0 + (8 - 0) \frac{t}{2} \][/tex]
Which simplifies to,
[tex]\[ x(t) = 5 - \frac{5}{2} t \][/tex]
[tex]\[ y(t) = 4 t \][/tex]
Thus, the parametric equations that model the path of the cyclist are:
[tex]\[ x(t) = 5 - \frac{5}{2} t \][/tex]
[tex]\[ y(t) = 4 t \][/tex]
Therefore, the correct answer is:
[tex]\[ x(t)=5 - \frac{5}{2}t \quad \text{and} \quad y(t)=4t \][/tex]
1. Identify Initial and Final Positions:
- The intersection is at the origin [tex]\((0,0)\)[/tex].
- The start of the bicycle path is 5 miles east of the intersection, so the starting point is [tex]\((5,0)\)[/tex].
- The end of the bicycle path is 8 miles north of the intersection, so the ending point is [tex]\((0,8)\)[/tex].
2. Determine the time required:
- The cyclist rides from the start to the end in 2 hours. Thus, the total time is 2 hours.
3. Derive Parametric Equations:
The parametric equations for a straight-line motion between two points typically take the form:
[tex]\[ x(t) = x_{\text{initial}} + (x_{\text{final}} - x_{\text{initial}}) \frac{t}{T} \][/tex]
[tex]\[ y(t) = y_{\text{initial}} + (y_{\text{final}} - y_{\text{initial}}) \frac{t}{T} \][/tex]
where:
- [tex]\(x_{\text{initial}} = 5\)[/tex]
- [tex]\(y_{\text{initial}} = 0\)[/tex]
- [tex]\(x_{\text{final}} = 0\)[/tex]
- [tex]\(y_{\text{final}} = 8\)[/tex]
- [tex]\(T = 2\)[/tex]
Using these values,
[tex]\[ x(t) = 5 + (0 - 5) \frac{t}{2} \][/tex]
[tex]\[ y(t) = 0 + (8 - 0) \frac{t}{2} \][/tex]
Which simplifies to,
[tex]\[ x(t) = 5 - \frac{5}{2} t \][/tex]
[tex]\[ y(t) = 4 t \][/tex]
Thus, the parametric equations that model the path of the cyclist are:
[tex]\[ x(t) = 5 - \frac{5}{2} t \][/tex]
[tex]\[ y(t) = 4 t \][/tex]
Therefore, the correct answer is:
[tex]\[ x(t)=5 - \frac{5}{2}t \quad \text{and} \quad y(t)=4t \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.