Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the parametric equations for the path of the cyclist, let's break down the problem step-by-step:
1. Identify Initial and Final Positions:
- The intersection is at the origin [tex]\((0,0)\)[/tex].
- The start of the bicycle path is 5 miles east of the intersection, so the starting point is [tex]\((5,0)\)[/tex].
- The end of the bicycle path is 8 miles north of the intersection, so the ending point is [tex]\((0,8)\)[/tex].
2. Determine the time required:
- The cyclist rides from the start to the end in 2 hours. Thus, the total time is 2 hours.
3. Derive Parametric Equations:
The parametric equations for a straight-line motion between two points typically take the form:
[tex]\[ x(t) = x_{\text{initial}} + (x_{\text{final}} - x_{\text{initial}}) \frac{t}{T} \][/tex]
[tex]\[ y(t) = y_{\text{initial}} + (y_{\text{final}} - y_{\text{initial}}) \frac{t}{T} \][/tex]
where:
- [tex]\(x_{\text{initial}} = 5\)[/tex]
- [tex]\(y_{\text{initial}} = 0\)[/tex]
- [tex]\(x_{\text{final}} = 0\)[/tex]
- [tex]\(y_{\text{final}} = 8\)[/tex]
- [tex]\(T = 2\)[/tex]
Using these values,
[tex]\[ x(t) = 5 + (0 - 5) \frac{t}{2} \][/tex]
[tex]\[ y(t) = 0 + (8 - 0) \frac{t}{2} \][/tex]
Which simplifies to,
[tex]\[ x(t) = 5 - \frac{5}{2} t \][/tex]
[tex]\[ y(t) = 4 t \][/tex]
Thus, the parametric equations that model the path of the cyclist are:
[tex]\[ x(t) = 5 - \frac{5}{2} t \][/tex]
[tex]\[ y(t) = 4 t \][/tex]
Therefore, the correct answer is:
[tex]\[ x(t)=5 - \frac{5}{2}t \quad \text{and} \quad y(t)=4t \][/tex]
1. Identify Initial and Final Positions:
- The intersection is at the origin [tex]\((0,0)\)[/tex].
- The start of the bicycle path is 5 miles east of the intersection, so the starting point is [tex]\((5,0)\)[/tex].
- The end of the bicycle path is 8 miles north of the intersection, so the ending point is [tex]\((0,8)\)[/tex].
2. Determine the time required:
- The cyclist rides from the start to the end in 2 hours. Thus, the total time is 2 hours.
3. Derive Parametric Equations:
The parametric equations for a straight-line motion between two points typically take the form:
[tex]\[ x(t) = x_{\text{initial}} + (x_{\text{final}} - x_{\text{initial}}) \frac{t}{T} \][/tex]
[tex]\[ y(t) = y_{\text{initial}} + (y_{\text{final}} - y_{\text{initial}}) \frac{t}{T} \][/tex]
where:
- [tex]\(x_{\text{initial}} = 5\)[/tex]
- [tex]\(y_{\text{initial}} = 0\)[/tex]
- [tex]\(x_{\text{final}} = 0\)[/tex]
- [tex]\(y_{\text{final}} = 8\)[/tex]
- [tex]\(T = 2\)[/tex]
Using these values,
[tex]\[ x(t) = 5 + (0 - 5) \frac{t}{2} \][/tex]
[tex]\[ y(t) = 0 + (8 - 0) \frac{t}{2} \][/tex]
Which simplifies to,
[tex]\[ x(t) = 5 - \frac{5}{2} t \][/tex]
[tex]\[ y(t) = 4 t \][/tex]
Thus, the parametric equations that model the path of the cyclist are:
[tex]\[ x(t) = 5 - \frac{5}{2} t \][/tex]
[tex]\[ y(t) = 4 t \][/tex]
Therefore, the correct answer is:
[tex]\[ x(t)=5 - \frac{5}{2}t \quad \text{and} \quad y(t)=4t \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.