Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine whether the table is appropriate for approximating [tex]\(\lim_{x \rightarrow -3} f(x)\)[/tex], we need to consider how the values of [tex]\(x\)[/tex] are approaching [tex]\(-3\)[/tex].
According to the table:
[tex]\[ \begin{array}{cccc} x & -2.999 & -2.99 & -2.9 & -2.75 \\ f(x) & 3.606 & 3.607 & 3.619 & 3.64 \\ \end{array} \][/tex]
Let's analyze the [tex]\(x\)[/tex]-values more closely:
- -2.999
- -2.99
- -2.9
- -2.75
All of these values are greater than [tex]\(-3\)[/tex] and are approaching [tex]\(-3\)[/tex] from the right (i.e., from values greater than [tex]\(-3\)[/tex]).
To properly approximate [tex]\(\lim_{x \rightarrow -3} f(x)\)[/tex], the [tex]\(x\)[/tex]-values should approach [tex]\(-3\)[/tex] from both directions: values slightly less than [tex]\(-3\)[/tex] and values slightly greater than [tex]\(-3\)[/tex]. However, in this table, the [tex]\(x\)[/tex]-values only approach [tex]\(-3\)[/tex] from the right.
Thus, because the [tex]\(x\)[/tex]-values are not approaching [tex]\(-3\)[/tex] from both sides, the table is not appropriate for approximating the limit as [tex]\(x\)[/tex] approaches [tex]\(-3\)[/tex]. Therefore, the correct reason why the table is not appropriate for approximating [tex]\(\lim_{x \rightarrow -3} f(x)\)[/tex] is:
(B) The table isn't appropriate. The [tex]$x$[/tex]-values only approach -3 from one direction.
According to the table:
[tex]\[ \begin{array}{cccc} x & -2.999 & -2.99 & -2.9 & -2.75 \\ f(x) & 3.606 & 3.607 & 3.619 & 3.64 \\ \end{array} \][/tex]
Let's analyze the [tex]\(x\)[/tex]-values more closely:
- -2.999
- -2.99
- -2.9
- -2.75
All of these values are greater than [tex]\(-3\)[/tex] and are approaching [tex]\(-3\)[/tex] from the right (i.e., from values greater than [tex]\(-3\)[/tex]).
To properly approximate [tex]\(\lim_{x \rightarrow -3} f(x)\)[/tex], the [tex]\(x\)[/tex]-values should approach [tex]\(-3\)[/tex] from both directions: values slightly less than [tex]\(-3\)[/tex] and values slightly greater than [tex]\(-3\)[/tex]. However, in this table, the [tex]\(x\)[/tex]-values only approach [tex]\(-3\)[/tex] from the right.
Thus, because the [tex]\(x\)[/tex]-values are not approaching [tex]\(-3\)[/tex] from both sides, the table is not appropriate for approximating the limit as [tex]\(x\)[/tex] approaches [tex]\(-3\)[/tex]. Therefore, the correct reason why the table is not appropriate for approximating [tex]\(\lim_{x \rightarrow -3} f(x)\)[/tex] is:
(B) The table isn't appropriate. The [tex]$x$[/tex]-values only approach -3 from one direction.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.