Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine whether the table is appropriate for approximating [tex]\(\lim_{x \rightarrow -3} f(x)\)[/tex], we need to consider how the values of [tex]\(x\)[/tex] are approaching [tex]\(-3\)[/tex].
According to the table:
[tex]\[ \begin{array}{cccc} x & -2.999 & -2.99 & -2.9 & -2.75 \\ f(x) & 3.606 & 3.607 & 3.619 & 3.64 \\ \end{array} \][/tex]
Let's analyze the [tex]\(x\)[/tex]-values more closely:
- -2.999
- -2.99
- -2.9
- -2.75
All of these values are greater than [tex]\(-3\)[/tex] and are approaching [tex]\(-3\)[/tex] from the right (i.e., from values greater than [tex]\(-3\)[/tex]).
To properly approximate [tex]\(\lim_{x \rightarrow -3} f(x)\)[/tex], the [tex]\(x\)[/tex]-values should approach [tex]\(-3\)[/tex] from both directions: values slightly less than [tex]\(-3\)[/tex] and values slightly greater than [tex]\(-3\)[/tex]. However, in this table, the [tex]\(x\)[/tex]-values only approach [tex]\(-3\)[/tex] from the right.
Thus, because the [tex]\(x\)[/tex]-values are not approaching [tex]\(-3\)[/tex] from both sides, the table is not appropriate for approximating the limit as [tex]\(x\)[/tex] approaches [tex]\(-3\)[/tex]. Therefore, the correct reason why the table is not appropriate for approximating [tex]\(\lim_{x \rightarrow -3} f(x)\)[/tex] is:
(B) The table isn't appropriate. The [tex]$x$[/tex]-values only approach -3 from one direction.
According to the table:
[tex]\[ \begin{array}{cccc} x & -2.999 & -2.99 & -2.9 & -2.75 \\ f(x) & 3.606 & 3.607 & 3.619 & 3.64 \\ \end{array} \][/tex]
Let's analyze the [tex]\(x\)[/tex]-values more closely:
- -2.999
- -2.99
- -2.9
- -2.75
All of these values are greater than [tex]\(-3\)[/tex] and are approaching [tex]\(-3\)[/tex] from the right (i.e., from values greater than [tex]\(-3\)[/tex]).
To properly approximate [tex]\(\lim_{x \rightarrow -3} f(x)\)[/tex], the [tex]\(x\)[/tex]-values should approach [tex]\(-3\)[/tex] from both directions: values slightly less than [tex]\(-3\)[/tex] and values slightly greater than [tex]\(-3\)[/tex]. However, in this table, the [tex]\(x\)[/tex]-values only approach [tex]\(-3\)[/tex] from the right.
Thus, because the [tex]\(x\)[/tex]-values are not approaching [tex]\(-3\)[/tex] from both sides, the table is not appropriate for approximating the limit as [tex]\(x\)[/tex] approaches [tex]\(-3\)[/tex]. Therefore, the correct reason why the table is not appropriate for approximating [tex]\(\lim_{x \rightarrow -3} f(x)\)[/tex] is:
(B) The table isn't appropriate. The [tex]$x$[/tex]-values only approach -3 from one direction.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.