Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

The equations of three lines are given below.

Line 1: [tex]y = 4x + 8[/tex]
Line 2: [tex]3x + 12y = -12[/tex]
Line 3: [tex]y = 4x - 5[/tex]

For each pair of lines, determine whether they are parallel, perpendicular, or neither.

1. Line 1 and Line 2:
A. Parallel
B. Perpendicular
C. Neither

2. Line 1 and Line 3:
A. Parallel
B. Perpendicular
C. Neither

3. Line 2 and Line 3:
A. Parallel
B. Perpendicular
C. Neither

Sagot :

To determine the relationship between given lines, we need to compare their slopes. Here are the steps to find the slopes and determine if they are parallel, perpendicular, or neither:

### Step 1: Find the slope of each line

Line 1: [tex]\( y = 4x + 8 \)[/tex]
- This equation is already in the slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.
- The slope ([tex]\( m \)[/tex]) of Line 1 is [tex]\( 4 \)[/tex].

Line 2: [tex]\( 3x + 12y = -12 \)[/tex]
- To find the slope, we need to rewrite this equation in slope-intercept form [tex]\( y = mx + b \)[/tex].
- Solve for [tex]\( y \)[/tex]:
[tex]\[ 3x + 12y = -12 \][/tex]
[tex]\[ 12y = -3x - 12 \][/tex]
[tex]\[ y = -\frac{1}{4}x - 1 \][/tex]
- The slope ([tex]\( m \)[/tex]) of Line 2 is [tex]\( -\frac{1}{4} \)[/tex].

Line 3: [tex]\( y = 4x - 5 \)[/tex]
- This equation is already in slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.
- The slope ([tex]\( m \)[/tex]) of Line 3 is [tex]\( 4 \)[/tex].

### Step 2: Compare the slopes

Line 1 and Line 2:
- Slope of Line 1: [tex]\( 4 \)[/tex]
- Slope of Line 2: [tex]\( -\frac{1}{4} \)[/tex]
- Two lines are perpendicular if the product of their slopes is [tex]\( -1 \)[/tex].
[tex]\[ 4 \times -\frac{1}{4} = -1 \][/tex]
- Thus, Line 1 and Line 2 are perpendicular.

Line 1 and Line 3:
- Slope of Line 1: [tex]\( 4 \)[/tex]
- Slope of Line 3: [tex]\( 4 \)[/tex]
- Two lines are parallel if they have the same slope.
- Since the slopes are equal, Line 1 and Line 3 are parallel.

Line 2 and Line 3:
- Slope of Line 2: [tex]\( -\frac{1}{4} \)[/tex]
- Slope of Line 3: [tex]\( 4 \)[/tex]
- Two lines are perpendicular if the product of their slopes is [tex]\( -1 \)[/tex].
[tex]\[ -\frac{1}{4} \times 4 = -1 \][/tex]
- Thus, Line 2 and Line 3 are perpendicular.

### Summary:
- Line 1 and Line 2: Perpendicular
- Line 1 and Line 3: Parallel
- Line 2 and Line 3: Perpendicular

So, the final relationships between the lines are:
[tex]\[ \begin{array}{l} \text{Line 1 and Line 2: Perpendicular} \\ \text{Line 1 and Line 3: Parallel} \\ \text{Line 2 and Line 3: Perpendicular} \end{array} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.