Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the relationship between given lines, we need to compare their slopes. Here are the steps to find the slopes and determine if they are parallel, perpendicular, or neither:
### Step 1: Find the slope of each line
Line 1: [tex]\( y = 4x + 8 \)[/tex]
- This equation is already in the slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.
- The slope ([tex]\( m \)[/tex]) of Line 1 is [tex]\( 4 \)[/tex].
Line 2: [tex]\( 3x + 12y = -12 \)[/tex]
- To find the slope, we need to rewrite this equation in slope-intercept form [tex]\( y = mx + b \)[/tex].
- Solve for [tex]\( y \)[/tex]:
[tex]\[ 3x + 12y = -12 \][/tex]
[tex]\[ 12y = -3x - 12 \][/tex]
[tex]\[ y = -\frac{1}{4}x - 1 \][/tex]
- The slope ([tex]\( m \)[/tex]) of Line 2 is [tex]\( -\frac{1}{4} \)[/tex].
Line 3: [tex]\( y = 4x - 5 \)[/tex]
- This equation is already in slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.
- The slope ([tex]\( m \)[/tex]) of Line 3 is [tex]\( 4 \)[/tex].
### Step 2: Compare the slopes
Line 1 and Line 2:
- Slope of Line 1: [tex]\( 4 \)[/tex]
- Slope of Line 2: [tex]\( -\frac{1}{4} \)[/tex]
- Two lines are perpendicular if the product of their slopes is [tex]\( -1 \)[/tex].
[tex]\[ 4 \times -\frac{1}{4} = -1 \][/tex]
- Thus, Line 1 and Line 2 are perpendicular.
Line 1 and Line 3:
- Slope of Line 1: [tex]\( 4 \)[/tex]
- Slope of Line 3: [tex]\( 4 \)[/tex]
- Two lines are parallel if they have the same slope.
- Since the slopes are equal, Line 1 and Line 3 are parallel.
Line 2 and Line 3:
- Slope of Line 2: [tex]\( -\frac{1}{4} \)[/tex]
- Slope of Line 3: [tex]\( 4 \)[/tex]
- Two lines are perpendicular if the product of their slopes is [tex]\( -1 \)[/tex].
[tex]\[ -\frac{1}{4} \times 4 = -1 \][/tex]
- Thus, Line 2 and Line 3 are perpendicular.
### Summary:
- Line 1 and Line 2: Perpendicular
- Line 1 and Line 3: Parallel
- Line 2 and Line 3: Perpendicular
So, the final relationships between the lines are:
[tex]\[ \begin{array}{l} \text{Line 1 and Line 2: Perpendicular} \\ \text{Line 1 and Line 3: Parallel} \\ \text{Line 2 and Line 3: Perpendicular} \end{array} \][/tex]
### Step 1: Find the slope of each line
Line 1: [tex]\( y = 4x + 8 \)[/tex]
- This equation is already in the slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.
- The slope ([tex]\( m \)[/tex]) of Line 1 is [tex]\( 4 \)[/tex].
Line 2: [tex]\( 3x + 12y = -12 \)[/tex]
- To find the slope, we need to rewrite this equation in slope-intercept form [tex]\( y = mx + b \)[/tex].
- Solve for [tex]\( y \)[/tex]:
[tex]\[ 3x + 12y = -12 \][/tex]
[tex]\[ 12y = -3x - 12 \][/tex]
[tex]\[ y = -\frac{1}{4}x - 1 \][/tex]
- The slope ([tex]\( m \)[/tex]) of Line 2 is [tex]\( -\frac{1}{4} \)[/tex].
Line 3: [tex]\( y = 4x - 5 \)[/tex]
- This equation is already in slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.
- The slope ([tex]\( m \)[/tex]) of Line 3 is [tex]\( 4 \)[/tex].
### Step 2: Compare the slopes
Line 1 and Line 2:
- Slope of Line 1: [tex]\( 4 \)[/tex]
- Slope of Line 2: [tex]\( -\frac{1}{4} \)[/tex]
- Two lines are perpendicular if the product of their slopes is [tex]\( -1 \)[/tex].
[tex]\[ 4 \times -\frac{1}{4} = -1 \][/tex]
- Thus, Line 1 and Line 2 are perpendicular.
Line 1 and Line 3:
- Slope of Line 1: [tex]\( 4 \)[/tex]
- Slope of Line 3: [tex]\( 4 \)[/tex]
- Two lines are parallel if they have the same slope.
- Since the slopes are equal, Line 1 and Line 3 are parallel.
Line 2 and Line 3:
- Slope of Line 2: [tex]\( -\frac{1}{4} \)[/tex]
- Slope of Line 3: [tex]\( 4 \)[/tex]
- Two lines are perpendicular if the product of their slopes is [tex]\( -1 \)[/tex].
[tex]\[ -\frac{1}{4} \times 4 = -1 \][/tex]
- Thus, Line 2 and Line 3 are perpendicular.
### Summary:
- Line 1 and Line 2: Perpendicular
- Line 1 and Line 3: Parallel
- Line 2 and Line 3: Perpendicular
So, the final relationships between the lines are:
[tex]\[ \begin{array}{l} \text{Line 1 and Line 2: Perpendicular} \\ \text{Line 1 and Line 3: Parallel} \\ \text{Line 2 and Line 3: Perpendicular} \end{array} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.