Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the relationship between given lines, we need to compare their slopes. Here are the steps to find the slopes and determine if they are parallel, perpendicular, or neither:
### Step 1: Find the slope of each line
Line 1: [tex]\( y = 4x + 8 \)[/tex]
- This equation is already in the slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.
- The slope ([tex]\( m \)[/tex]) of Line 1 is [tex]\( 4 \)[/tex].
Line 2: [tex]\( 3x + 12y = -12 \)[/tex]
- To find the slope, we need to rewrite this equation in slope-intercept form [tex]\( y = mx + b \)[/tex].
- Solve for [tex]\( y \)[/tex]:
[tex]\[ 3x + 12y = -12 \][/tex]
[tex]\[ 12y = -3x - 12 \][/tex]
[tex]\[ y = -\frac{1}{4}x - 1 \][/tex]
- The slope ([tex]\( m \)[/tex]) of Line 2 is [tex]\( -\frac{1}{4} \)[/tex].
Line 3: [tex]\( y = 4x - 5 \)[/tex]
- This equation is already in slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.
- The slope ([tex]\( m \)[/tex]) of Line 3 is [tex]\( 4 \)[/tex].
### Step 2: Compare the slopes
Line 1 and Line 2:
- Slope of Line 1: [tex]\( 4 \)[/tex]
- Slope of Line 2: [tex]\( -\frac{1}{4} \)[/tex]
- Two lines are perpendicular if the product of their slopes is [tex]\( -1 \)[/tex].
[tex]\[ 4 \times -\frac{1}{4} = -1 \][/tex]
- Thus, Line 1 and Line 2 are perpendicular.
Line 1 and Line 3:
- Slope of Line 1: [tex]\( 4 \)[/tex]
- Slope of Line 3: [tex]\( 4 \)[/tex]
- Two lines are parallel if they have the same slope.
- Since the slopes are equal, Line 1 and Line 3 are parallel.
Line 2 and Line 3:
- Slope of Line 2: [tex]\( -\frac{1}{4} \)[/tex]
- Slope of Line 3: [tex]\( 4 \)[/tex]
- Two lines are perpendicular if the product of their slopes is [tex]\( -1 \)[/tex].
[tex]\[ -\frac{1}{4} \times 4 = -1 \][/tex]
- Thus, Line 2 and Line 3 are perpendicular.
### Summary:
- Line 1 and Line 2: Perpendicular
- Line 1 and Line 3: Parallel
- Line 2 and Line 3: Perpendicular
So, the final relationships between the lines are:
[tex]\[ \begin{array}{l} \text{Line 1 and Line 2: Perpendicular} \\ \text{Line 1 and Line 3: Parallel} \\ \text{Line 2 and Line 3: Perpendicular} \end{array} \][/tex]
### Step 1: Find the slope of each line
Line 1: [tex]\( y = 4x + 8 \)[/tex]
- This equation is already in the slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.
- The slope ([tex]\( m \)[/tex]) of Line 1 is [tex]\( 4 \)[/tex].
Line 2: [tex]\( 3x + 12y = -12 \)[/tex]
- To find the slope, we need to rewrite this equation in slope-intercept form [tex]\( y = mx + b \)[/tex].
- Solve for [tex]\( y \)[/tex]:
[tex]\[ 3x + 12y = -12 \][/tex]
[tex]\[ 12y = -3x - 12 \][/tex]
[tex]\[ y = -\frac{1}{4}x - 1 \][/tex]
- The slope ([tex]\( m \)[/tex]) of Line 2 is [tex]\( -\frac{1}{4} \)[/tex].
Line 3: [tex]\( y = 4x - 5 \)[/tex]
- This equation is already in slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.
- The slope ([tex]\( m \)[/tex]) of Line 3 is [tex]\( 4 \)[/tex].
### Step 2: Compare the slopes
Line 1 and Line 2:
- Slope of Line 1: [tex]\( 4 \)[/tex]
- Slope of Line 2: [tex]\( -\frac{1}{4} \)[/tex]
- Two lines are perpendicular if the product of their slopes is [tex]\( -1 \)[/tex].
[tex]\[ 4 \times -\frac{1}{4} = -1 \][/tex]
- Thus, Line 1 and Line 2 are perpendicular.
Line 1 and Line 3:
- Slope of Line 1: [tex]\( 4 \)[/tex]
- Slope of Line 3: [tex]\( 4 \)[/tex]
- Two lines are parallel if they have the same slope.
- Since the slopes are equal, Line 1 and Line 3 are parallel.
Line 2 and Line 3:
- Slope of Line 2: [tex]\( -\frac{1}{4} \)[/tex]
- Slope of Line 3: [tex]\( 4 \)[/tex]
- Two lines are perpendicular if the product of their slopes is [tex]\( -1 \)[/tex].
[tex]\[ -\frac{1}{4} \times 4 = -1 \][/tex]
- Thus, Line 2 and Line 3 are perpendicular.
### Summary:
- Line 1 and Line 2: Perpendicular
- Line 1 and Line 3: Parallel
- Line 2 and Line 3: Perpendicular
So, the final relationships between the lines are:
[tex]\[ \begin{array}{l} \text{Line 1 and Line 2: Perpendicular} \\ \text{Line 1 and Line 3: Parallel} \\ \text{Line 2 and Line 3: Perpendicular} \end{array} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.