Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Solution:
### Part (a)
To determine the value of [tex]\( y \)[/tex] when the given matrix [tex]\( A \)[/tex] is singular, we first need to find the determinant of the matrix [tex]\( A \)[/tex]. The matrix [tex]\( A \)[/tex] is given by:
[tex]\[ A = \begin{pmatrix} 3y - 1 & y + 1 \\ 2 & 3 \end{pmatrix} \][/tex]
For a matrix to be singular, its determinant must be zero. The determinant [tex]\(|A|\)[/tex] of a 2x2 matrix [tex]\(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\)[/tex] is calculated as:
[tex]\[ |A| = ad - bc \][/tex]
Substituting the corresponding values from matrix [tex]\( A \)[/tex]:
[tex]\[ a = 3y - 1, \quad b = y + 1, \quad c = 2, \quad d = 3 \][/tex]
So, the determinant is:
[tex]\[ |A| = (3y - 1) \cdot 3 - (y + 1) \cdot 2 \][/tex]
Calculating this expression:
[tex]\[ |A| = 3(3y - 1) - 2(y + 1) \][/tex]
[tex]\[ = 9y - 3 - 2y - 2 \][/tex]
[tex]\[ = 7y - 5 \][/tex]
For the matrix to be singular, the determinant must be 0:
[tex]\[ 7y - 5 = 0 \][/tex]
Solving for [tex]\( y \)[/tex]:
[tex]\[ 7y = 5 \][/tex]
[tex]\[ y = \frac{5}{7} \][/tex]
[tex]\[ y \approx 0.7142857142857143 \][/tex]
### Part (b)
To solve the given system of linear equations using the matrix method, the system of equations is:
[tex]\[ \begin{cases} 2x + y = 7 \\ 3x + 5y = 20 \end{cases} \][/tex]
First, we write the system in matrix form [tex]\( AX = B \)[/tex]:
[tex]\[ A = \begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \end{pmatrix}, \quad B = \begin{pmatrix} 7 \\ 20 \end{pmatrix} \][/tex]
The solution to [tex]\( AX = B \)[/tex] is found by [tex]\( X = A^{-1}B \)[/tex], where [tex]\( A^{-1} \)[/tex] is the inverse of the matrix [tex]\( A \)[/tex].
Calculating the inverse of the matrix [tex]\( A \)[/tex]:
[tex]\[ A^{-1} = \frac{1}{|A|} \left( \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \right) \][/tex]
For the matrix [tex]\( A \)[/tex]:
[tex]\[ a = 2, \quad b = 1, \quad c = 3, \quad d = 5 \][/tex]
The determinant [tex]\(|A|\)[/tex] is:
[tex]\[ |A| = ad - bc = (2)(5) - (1)(3) = 10 - 3 = 7 \][/tex]
Thus, the inverse [tex]\( A^{-1} \)[/tex] is:
[tex]\[ A^{-1} = \frac{1}{7} \begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix} \][/tex]
So,
[tex]\[ X = A^{-1} B = \frac{1}{7} \begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 7 \\ 20 \end{pmatrix} \][/tex]
Now, perform the matrix multiplication:
[tex]\[ X = \frac{1}{7} \begin{pmatrix} (5 \cdot 7) + (-1 \cdot 20) \\ (-3 \cdot 7) + (2 \cdot 20) \end{pmatrix} \][/tex]
[tex]\[ = \frac{1}{7} \begin{pmatrix} 35 - 20 \\ -21 + 40 \end{pmatrix} \][/tex]
[tex]\[ = \frac{1}{7} \begin{pmatrix} 15 \\ 19 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} \frac{15}{7} \\ \frac{19}{7} \end{pmatrix} \][/tex]
[tex]\[ \approx \begin{pmatrix} 2.14285714 \\ 2.71428571 \end{pmatrix} \][/tex]
So, the solution [tex]\( (x, y) \)[/tex] is approximately:
[tex]\[ x \approx 2.14285714, \quad y \approx 2.71428571 \][/tex]
### Part (a)
To determine the value of [tex]\( y \)[/tex] when the given matrix [tex]\( A \)[/tex] is singular, we first need to find the determinant of the matrix [tex]\( A \)[/tex]. The matrix [tex]\( A \)[/tex] is given by:
[tex]\[ A = \begin{pmatrix} 3y - 1 & y + 1 \\ 2 & 3 \end{pmatrix} \][/tex]
For a matrix to be singular, its determinant must be zero. The determinant [tex]\(|A|\)[/tex] of a 2x2 matrix [tex]\(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\)[/tex] is calculated as:
[tex]\[ |A| = ad - bc \][/tex]
Substituting the corresponding values from matrix [tex]\( A \)[/tex]:
[tex]\[ a = 3y - 1, \quad b = y + 1, \quad c = 2, \quad d = 3 \][/tex]
So, the determinant is:
[tex]\[ |A| = (3y - 1) \cdot 3 - (y + 1) \cdot 2 \][/tex]
Calculating this expression:
[tex]\[ |A| = 3(3y - 1) - 2(y + 1) \][/tex]
[tex]\[ = 9y - 3 - 2y - 2 \][/tex]
[tex]\[ = 7y - 5 \][/tex]
For the matrix to be singular, the determinant must be 0:
[tex]\[ 7y - 5 = 0 \][/tex]
Solving for [tex]\( y \)[/tex]:
[tex]\[ 7y = 5 \][/tex]
[tex]\[ y = \frac{5}{7} \][/tex]
[tex]\[ y \approx 0.7142857142857143 \][/tex]
### Part (b)
To solve the given system of linear equations using the matrix method, the system of equations is:
[tex]\[ \begin{cases} 2x + y = 7 \\ 3x + 5y = 20 \end{cases} \][/tex]
First, we write the system in matrix form [tex]\( AX = B \)[/tex]:
[tex]\[ A = \begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \end{pmatrix}, \quad B = \begin{pmatrix} 7 \\ 20 \end{pmatrix} \][/tex]
The solution to [tex]\( AX = B \)[/tex] is found by [tex]\( X = A^{-1}B \)[/tex], where [tex]\( A^{-1} \)[/tex] is the inverse of the matrix [tex]\( A \)[/tex].
Calculating the inverse of the matrix [tex]\( A \)[/tex]:
[tex]\[ A^{-1} = \frac{1}{|A|} \left( \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \right) \][/tex]
For the matrix [tex]\( A \)[/tex]:
[tex]\[ a = 2, \quad b = 1, \quad c = 3, \quad d = 5 \][/tex]
The determinant [tex]\(|A|\)[/tex] is:
[tex]\[ |A| = ad - bc = (2)(5) - (1)(3) = 10 - 3 = 7 \][/tex]
Thus, the inverse [tex]\( A^{-1} \)[/tex] is:
[tex]\[ A^{-1} = \frac{1}{7} \begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix} \][/tex]
So,
[tex]\[ X = A^{-1} B = \frac{1}{7} \begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 7 \\ 20 \end{pmatrix} \][/tex]
Now, perform the matrix multiplication:
[tex]\[ X = \frac{1}{7} \begin{pmatrix} (5 \cdot 7) + (-1 \cdot 20) \\ (-3 \cdot 7) + (2 \cdot 20) \end{pmatrix} \][/tex]
[tex]\[ = \frac{1}{7} \begin{pmatrix} 35 - 20 \\ -21 + 40 \end{pmatrix} \][/tex]
[tex]\[ = \frac{1}{7} \begin{pmatrix} 15 \\ 19 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} \frac{15}{7} \\ \frac{19}{7} \end{pmatrix} \][/tex]
[tex]\[ \approx \begin{pmatrix} 2.14285714 \\ 2.71428571 \end{pmatrix} \][/tex]
So, the solution [tex]\( (x, y) \)[/tex] is approximately:
[tex]\[ x \approx 2.14285714, \quad y \approx 2.71428571 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.