Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

13.

(a) If a matrix [tex]$A$[/tex] is singular, what will be the value of [tex]$y$[/tex] given that
[tex]\[
A = \begin{pmatrix}
3y - 1 & y + 11
\end{pmatrix}
\][/tex]

(b) Solve the following simultaneous equation by the matrix method:
[tex]\[
\begin{cases}
2x + y = 7
\end{cases}
\][/tex]

Sagot :

Solution:

### Part (a)

To determine the value of [tex]\( y \)[/tex] when the given matrix [tex]\( A \)[/tex] is singular, we first need to find the determinant of the matrix [tex]\( A \)[/tex]. The matrix [tex]\( A \)[/tex] is given by:

[tex]\[ A = \begin{pmatrix} 3y - 1 & y + 1 \\ 2 & 3 \end{pmatrix} \][/tex]

For a matrix to be singular, its determinant must be zero. The determinant [tex]\(|A|\)[/tex] of a 2x2 matrix [tex]\(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\)[/tex] is calculated as:

[tex]\[ |A| = ad - bc \][/tex]

Substituting the corresponding values from matrix [tex]\( A \)[/tex]:

[tex]\[ a = 3y - 1, \quad b = y + 1, \quad c = 2, \quad d = 3 \][/tex]

So, the determinant is:

[tex]\[ |A| = (3y - 1) \cdot 3 - (y + 1) \cdot 2 \][/tex]

Calculating this expression:

[tex]\[ |A| = 3(3y - 1) - 2(y + 1) \][/tex]
[tex]\[ = 9y - 3 - 2y - 2 \][/tex]
[tex]\[ = 7y - 5 \][/tex]

For the matrix to be singular, the determinant must be 0:

[tex]\[ 7y - 5 = 0 \][/tex]

Solving for [tex]\( y \)[/tex]:

[tex]\[ 7y = 5 \][/tex]
[tex]\[ y = \frac{5}{7} \][/tex]
[tex]\[ y \approx 0.7142857142857143 \][/tex]

### Part (b)

To solve the given system of linear equations using the matrix method, the system of equations is:

[tex]\[ \begin{cases} 2x + y = 7 \\ 3x + 5y = 20 \end{cases} \][/tex]

First, we write the system in matrix form [tex]\( AX = B \)[/tex]:

[tex]\[ A = \begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \end{pmatrix}, \quad B = \begin{pmatrix} 7 \\ 20 \end{pmatrix} \][/tex]

The solution to [tex]\( AX = B \)[/tex] is found by [tex]\( X = A^{-1}B \)[/tex], where [tex]\( A^{-1} \)[/tex] is the inverse of the matrix [tex]\( A \)[/tex].

Calculating the inverse of the matrix [tex]\( A \)[/tex]:

[tex]\[ A^{-1} = \frac{1}{|A|} \left( \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \right) \][/tex]

For the matrix [tex]\( A \)[/tex]:

[tex]\[ a = 2, \quad b = 1, \quad c = 3, \quad d = 5 \][/tex]

The determinant [tex]\(|A|\)[/tex] is:

[tex]\[ |A| = ad - bc = (2)(5) - (1)(3) = 10 - 3 = 7 \][/tex]

Thus, the inverse [tex]\( A^{-1} \)[/tex] is:

[tex]\[ A^{-1} = \frac{1}{7} \begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix} \][/tex]

So,

[tex]\[ X = A^{-1} B = \frac{1}{7} \begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 7 \\ 20 \end{pmatrix} \][/tex]

Now, perform the matrix multiplication:

[tex]\[ X = \frac{1}{7} \begin{pmatrix} (5 \cdot 7) + (-1 \cdot 20) \\ (-3 \cdot 7) + (2 \cdot 20) \end{pmatrix} \][/tex]
[tex]\[ = \frac{1}{7} \begin{pmatrix} 35 - 20 \\ -21 + 40 \end{pmatrix} \][/tex]
[tex]\[ = \frac{1}{7} \begin{pmatrix} 15 \\ 19 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} \frac{15}{7} \\ \frac{19}{7} \end{pmatrix} \][/tex]
[tex]\[ \approx \begin{pmatrix} 2.14285714 \\ 2.71428571 \end{pmatrix} \][/tex]

So, the solution [tex]\( (x, y) \)[/tex] is approximately:

[tex]\[ x \approx 2.14285714, \quad y \approx 2.71428571 \][/tex]