At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Solution:
### Part (a)
To determine the value of [tex]\( y \)[/tex] when the given matrix [tex]\( A \)[/tex] is singular, we first need to find the determinant of the matrix [tex]\( A \)[/tex]. The matrix [tex]\( A \)[/tex] is given by:
[tex]\[ A = \begin{pmatrix} 3y - 1 & y + 1 \\ 2 & 3 \end{pmatrix} \][/tex]
For a matrix to be singular, its determinant must be zero. The determinant [tex]\(|A|\)[/tex] of a 2x2 matrix [tex]\(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\)[/tex] is calculated as:
[tex]\[ |A| = ad - bc \][/tex]
Substituting the corresponding values from matrix [tex]\( A \)[/tex]:
[tex]\[ a = 3y - 1, \quad b = y + 1, \quad c = 2, \quad d = 3 \][/tex]
So, the determinant is:
[tex]\[ |A| = (3y - 1) \cdot 3 - (y + 1) \cdot 2 \][/tex]
Calculating this expression:
[tex]\[ |A| = 3(3y - 1) - 2(y + 1) \][/tex]
[tex]\[ = 9y - 3 - 2y - 2 \][/tex]
[tex]\[ = 7y - 5 \][/tex]
For the matrix to be singular, the determinant must be 0:
[tex]\[ 7y - 5 = 0 \][/tex]
Solving for [tex]\( y \)[/tex]:
[tex]\[ 7y = 5 \][/tex]
[tex]\[ y = \frac{5}{7} \][/tex]
[tex]\[ y \approx 0.7142857142857143 \][/tex]
### Part (b)
To solve the given system of linear equations using the matrix method, the system of equations is:
[tex]\[ \begin{cases} 2x + y = 7 \\ 3x + 5y = 20 \end{cases} \][/tex]
First, we write the system in matrix form [tex]\( AX = B \)[/tex]:
[tex]\[ A = \begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \end{pmatrix}, \quad B = \begin{pmatrix} 7 \\ 20 \end{pmatrix} \][/tex]
The solution to [tex]\( AX = B \)[/tex] is found by [tex]\( X = A^{-1}B \)[/tex], where [tex]\( A^{-1} \)[/tex] is the inverse of the matrix [tex]\( A \)[/tex].
Calculating the inverse of the matrix [tex]\( A \)[/tex]:
[tex]\[ A^{-1} = \frac{1}{|A|} \left( \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \right) \][/tex]
For the matrix [tex]\( A \)[/tex]:
[tex]\[ a = 2, \quad b = 1, \quad c = 3, \quad d = 5 \][/tex]
The determinant [tex]\(|A|\)[/tex] is:
[tex]\[ |A| = ad - bc = (2)(5) - (1)(3) = 10 - 3 = 7 \][/tex]
Thus, the inverse [tex]\( A^{-1} \)[/tex] is:
[tex]\[ A^{-1} = \frac{1}{7} \begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix} \][/tex]
So,
[tex]\[ X = A^{-1} B = \frac{1}{7} \begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 7 \\ 20 \end{pmatrix} \][/tex]
Now, perform the matrix multiplication:
[tex]\[ X = \frac{1}{7} \begin{pmatrix} (5 \cdot 7) + (-1 \cdot 20) \\ (-3 \cdot 7) + (2 \cdot 20) \end{pmatrix} \][/tex]
[tex]\[ = \frac{1}{7} \begin{pmatrix} 35 - 20 \\ -21 + 40 \end{pmatrix} \][/tex]
[tex]\[ = \frac{1}{7} \begin{pmatrix} 15 \\ 19 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} \frac{15}{7} \\ \frac{19}{7} \end{pmatrix} \][/tex]
[tex]\[ \approx \begin{pmatrix} 2.14285714 \\ 2.71428571 \end{pmatrix} \][/tex]
So, the solution [tex]\( (x, y) \)[/tex] is approximately:
[tex]\[ x \approx 2.14285714, \quad y \approx 2.71428571 \][/tex]
### Part (a)
To determine the value of [tex]\( y \)[/tex] when the given matrix [tex]\( A \)[/tex] is singular, we first need to find the determinant of the matrix [tex]\( A \)[/tex]. The matrix [tex]\( A \)[/tex] is given by:
[tex]\[ A = \begin{pmatrix} 3y - 1 & y + 1 \\ 2 & 3 \end{pmatrix} \][/tex]
For a matrix to be singular, its determinant must be zero. The determinant [tex]\(|A|\)[/tex] of a 2x2 matrix [tex]\(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\)[/tex] is calculated as:
[tex]\[ |A| = ad - bc \][/tex]
Substituting the corresponding values from matrix [tex]\( A \)[/tex]:
[tex]\[ a = 3y - 1, \quad b = y + 1, \quad c = 2, \quad d = 3 \][/tex]
So, the determinant is:
[tex]\[ |A| = (3y - 1) \cdot 3 - (y + 1) \cdot 2 \][/tex]
Calculating this expression:
[tex]\[ |A| = 3(3y - 1) - 2(y + 1) \][/tex]
[tex]\[ = 9y - 3 - 2y - 2 \][/tex]
[tex]\[ = 7y - 5 \][/tex]
For the matrix to be singular, the determinant must be 0:
[tex]\[ 7y - 5 = 0 \][/tex]
Solving for [tex]\( y \)[/tex]:
[tex]\[ 7y = 5 \][/tex]
[tex]\[ y = \frac{5}{7} \][/tex]
[tex]\[ y \approx 0.7142857142857143 \][/tex]
### Part (b)
To solve the given system of linear equations using the matrix method, the system of equations is:
[tex]\[ \begin{cases} 2x + y = 7 \\ 3x + 5y = 20 \end{cases} \][/tex]
First, we write the system in matrix form [tex]\( AX = B \)[/tex]:
[tex]\[ A = \begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \end{pmatrix}, \quad B = \begin{pmatrix} 7 \\ 20 \end{pmatrix} \][/tex]
The solution to [tex]\( AX = B \)[/tex] is found by [tex]\( X = A^{-1}B \)[/tex], where [tex]\( A^{-1} \)[/tex] is the inverse of the matrix [tex]\( A \)[/tex].
Calculating the inverse of the matrix [tex]\( A \)[/tex]:
[tex]\[ A^{-1} = \frac{1}{|A|} \left( \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \right) \][/tex]
For the matrix [tex]\( A \)[/tex]:
[tex]\[ a = 2, \quad b = 1, \quad c = 3, \quad d = 5 \][/tex]
The determinant [tex]\(|A|\)[/tex] is:
[tex]\[ |A| = ad - bc = (2)(5) - (1)(3) = 10 - 3 = 7 \][/tex]
Thus, the inverse [tex]\( A^{-1} \)[/tex] is:
[tex]\[ A^{-1} = \frac{1}{7} \begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix} \][/tex]
So,
[tex]\[ X = A^{-1} B = \frac{1}{7} \begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 7 \\ 20 \end{pmatrix} \][/tex]
Now, perform the matrix multiplication:
[tex]\[ X = \frac{1}{7} \begin{pmatrix} (5 \cdot 7) + (-1 \cdot 20) \\ (-3 \cdot 7) + (2 \cdot 20) \end{pmatrix} \][/tex]
[tex]\[ = \frac{1}{7} \begin{pmatrix} 35 - 20 \\ -21 + 40 \end{pmatrix} \][/tex]
[tex]\[ = \frac{1}{7} \begin{pmatrix} 15 \\ 19 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} \frac{15}{7} \\ \frac{19}{7} \end{pmatrix} \][/tex]
[tex]\[ \approx \begin{pmatrix} 2.14285714 \\ 2.71428571 \end{pmatrix} \][/tex]
So, the solution [tex]\( (x, y) \)[/tex] is approximately:
[tex]\[ x \approx 2.14285714, \quad y \approx 2.71428571 \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.