Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To perform the operation [tex]\((-2+\sqrt{-8})+(6-\sqrt{-54})\)[/tex], let's break it down step-by-step and then combine the parts.
1. Calculate [tex]\(\sqrt{-8}\)[/tex]:
- Since [tex]\(\sqrt{-8}\)[/tex] involves a negative number under the square root, we know we will get an imaginary number.
- The square root of [tex]\(-8\)[/tex] can be expressed as [tex]\(\sqrt{8} \cdot i\)[/tex].
- [tex]\(\sqrt{8}\)[/tex] simplifies to [tex]\(2\sqrt{2}\)[/tex].
- Therefore, [tex]\(\sqrt{-8} = 2\sqrt{2} \cdot i \approx 2.8284271247461903j\)[/tex].
2. Calculate [tex]\(\sqrt{-54}\)[/tex]:
- Similarly for [tex]\(\sqrt{-54}\)[/tex], it will also result in an imaginary number.
- The square root of [tex]\(-54\)[/tex] can be expressed as [tex]\(\sqrt{54} \cdot i\)[/tex].
- [tex]\(\sqrt{54}\)[/tex] simplifies to [tex]\(3\sqrt{6}\)[/tex].
- Therefore, [tex]\(\sqrt{-54} = 3\sqrt{6} \cdot i \approx 7.348469228349534j\)[/tex].
3. Form the two original complex numbers:
- The first complex number is [tex]\(-2 + \sqrt{-8}\)[/tex] which we now know is [tex]\(-2 + 2.8284271247461903j\)[/tex].
- The second complex number is [tex]\(6 - \sqrt{-54}\)[/tex] which we now know is [tex]\(6 - 7.348469228349534j\)[/tex].
4. Add the real parts:
- The real part of the first number is [tex]\(-2\)[/tex].
- The real part of the second number is [tex]\(6\)[/tex].
- Adding these gives: [tex]\(-2 + 6 = 4\)[/tex].
5. Add the imaginary parts:
- The imaginary part of the first number is [tex]\(2.8284271247461903j\)[/tex].
- The imaginary part of the second number is [tex]\(-7.348469228349534j\)[/tex].
- Adding these gives: [tex]\(2.8284271247461903j + (-7.348469228349534j) \approx -4.520042103603344j\)[/tex].
6. Combine the results:
- The resulting complex number is the sum of the real part and the imaginary part we calculated.
- Therefore, the result in standard form is: [tex]\(4 + (-4.520042103603344j)\)[/tex].
Ultimately, the final result is:
[tex]\[ 4 + 10.176896353095724j \][/tex]
1. Calculate [tex]\(\sqrt{-8}\)[/tex]:
- Since [tex]\(\sqrt{-8}\)[/tex] involves a negative number under the square root, we know we will get an imaginary number.
- The square root of [tex]\(-8\)[/tex] can be expressed as [tex]\(\sqrt{8} \cdot i\)[/tex].
- [tex]\(\sqrt{8}\)[/tex] simplifies to [tex]\(2\sqrt{2}\)[/tex].
- Therefore, [tex]\(\sqrt{-8} = 2\sqrt{2} \cdot i \approx 2.8284271247461903j\)[/tex].
2. Calculate [tex]\(\sqrt{-54}\)[/tex]:
- Similarly for [tex]\(\sqrt{-54}\)[/tex], it will also result in an imaginary number.
- The square root of [tex]\(-54\)[/tex] can be expressed as [tex]\(\sqrt{54} \cdot i\)[/tex].
- [tex]\(\sqrt{54}\)[/tex] simplifies to [tex]\(3\sqrt{6}\)[/tex].
- Therefore, [tex]\(\sqrt{-54} = 3\sqrt{6} \cdot i \approx 7.348469228349534j\)[/tex].
3. Form the two original complex numbers:
- The first complex number is [tex]\(-2 + \sqrt{-8}\)[/tex] which we now know is [tex]\(-2 + 2.8284271247461903j\)[/tex].
- The second complex number is [tex]\(6 - \sqrt{-54}\)[/tex] which we now know is [tex]\(6 - 7.348469228349534j\)[/tex].
4. Add the real parts:
- The real part of the first number is [tex]\(-2\)[/tex].
- The real part of the second number is [tex]\(6\)[/tex].
- Adding these gives: [tex]\(-2 + 6 = 4\)[/tex].
5. Add the imaginary parts:
- The imaginary part of the first number is [tex]\(2.8284271247461903j\)[/tex].
- The imaginary part of the second number is [tex]\(-7.348469228349534j\)[/tex].
- Adding these gives: [tex]\(2.8284271247461903j + (-7.348469228349534j) \approx -4.520042103603344j\)[/tex].
6. Combine the results:
- The resulting complex number is the sum of the real part and the imaginary part we calculated.
- Therefore, the result in standard form is: [tex]\(4 + (-4.520042103603344j)\)[/tex].
Ultimately, the final result is:
[tex]\[ 4 + 10.176896353095724j \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.