Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
observable exponential decay characteristic.
Looking at the data, we need to determine the type of relationship between time and volume. Specifically, we examine whether the volume decreases linearly, quadratically, exponentially, etc.
Given the time and volume data:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (weeks)} & \text{Volume (cubic meters)} \\ \hline 1 & 12.0 \\ \hline 2 & 6.1 \\ \hline 3 & 3.0 \\ \hline 4 & 1.6 \\ \hline 5 & 0.8 \\ \hline \end{array} \][/tex]
To analyze the data, we propose an exponential model of the form:
[tex]\[ V(t) = a e^{bt} \][/tex]
where [tex]\(V(t)\)[/tex] is the volume at time [tex]\(t\)[/tex], [tex]\(a\)[/tex] is the initial volume, and [tex]\(b\)[/tex] is the decay constant.
From fitting the data to this exponential model, the parameters calculated are:
[tex]\[ a = 23.73071 \][/tex]
[tex]\[ b = -0.68159 \][/tex]
The fitted volumes at each time point are:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (weeks)} & \text{Fitted Volume (cubic meters)} \\ \hline 1 & 12.0033 \\ \hline 2 & 6.0714 \\ \hline 3 & 3.0710 \\ \hline 4 & 1.5533 \\ \hline 5 & 0.7857 \\ \hline \end{array} \][/tex]
The residuals, which are the differences between the observed and fitted volumes, are:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (weeks)} & \text{Residuals} \\ \hline 1 & -0.0033 \\ \hline 2 & 0.0286 \\ \hline 3 & -0.0710 \\ \hline 4 & 0.0467 \\ \hline 5 & 0.0143 \\ \hline \end{array} \][/tex]
The sum of the squares of the residuals, which gives an indication of the fitting error, is calculated to be:
[tex]\[ 0.00825 \][/tex]
From this analysis, it is clear that the exponential model fits the data very well, as indicated by the small residuals and the sum of the residuals squared.
Thus, the data in the table can best be described as showing an exponential decay characteristic because there is a significant reduction in volume over time, consistent with an exponential decrease.
Looking at the data, we need to determine the type of relationship between time and volume. Specifically, we examine whether the volume decreases linearly, quadratically, exponentially, etc.
Given the time and volume data:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (weeks)} & \text{Volume (cubic meters)} \\ \hline 1 & 12.0 \\ \hline 2 & 6.1 \\ \hline 3 & 3.0 \\ \hline 4 & 1.6 \\ \hline 5 & 0.8 \\ \hline \end{array} \][/tex]
To analyze the data, we propose an exponential model of the form:
[tex]\[ V(t) = a e^{bt} \][/tex]
where [tex]\(V(t)\)[/tex] is the volume at time [tex]\(t\)[/tex], [tex]\(a\)[/tex] is the initial volume, and [tex]\(b\)[/tex] is the decay constant.
From fitting the data to this exponential model, the parameters calculated are:
[tex]\[ a = 23.73071 \][/tex]
[tex]\[ b = -0.68159 \][/tex]
The fitted volumes at each time point are:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (weeks)} & \text{Fitted Volume (cubic meters)} \\ \hline 1 & 12.0033 \\ \hline 2 & 6.0714 \\ \hline 3 & 3.0710 \\ \hline 4 & 1.5533 \\ \hline 5 & 0.7857 \\ \hline \end{array} \][/tex]
The residuals, which are the differences between the observed and fitted volumes, are:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (weeks)} & \text{Residuals} \\ \hline 1 & -0.0033 \\ \hline 2 & 0.0286 \\ \hline 3 & -0.0710 \\ \hline 4 & 0.0467 \\ \hline 5 & 0.0143 \\ \hline \end{array} \][/tex]
The sum of the squares of the residuals, which gives an indication of the fitting error, is calculated to be:
[tex]\[ 0.00825 \][/tex]
From this analysis, it is clear that the exponential model fits the data very well, as indicated by the small residuals and the sum of the residuals squared.
Thus, the data in the table can best be described as showing an exponential decay characteristic because there is a significant reduction in volume over time, consistent with an exponential decrease.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.