Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the minimum cross-sectional area of the wire needed to prevent the voltage at the motor from dropping below 230 V, we can approach the problem as follows:
1. Identify the given values:
- Current ([tex]\( I \)[/tex]) = 20 A
- Voltage of the power source ([tex]\( V_{\text{source}} \)[/tex]) = 240 V
- Voltage at the motor ([tex]\( V_{\text{motor}} \)[/tex]) = 230 V
- Distance from the power source to the motor ([tex]\( d \)[/tex]) = 15 m
- Resistivity of copper ([tex]\( \rho \)[/tex]) = [tex]\( 1.68 \times 10^{-8} \)[/tex] ohm-meter
2. Calculate the allowable voltage drop:
The voltage drop ([tex]\( V_{\text{drop}} \)[/tex]) can be calculated using the difference between the voltage of the power source and the voltage at the motor.
[tex]\[ V_{\text{drop}} = V_{\text{source}} - V_{\text{motor}} \][/tex]
Substituting the given values:
[tex]\[ V_{\text{drop}} = 240 \, \text{V} - 230 \, \text{V} = 10 \, \text{V} \][/tex]
3. Determine the resistance of the wire:
The voltage drop ([tex]\( V_{\text{drop}} \)[/tex]) across a wire can be expressed using Ohm's Law:
[tex]\[ V_{\text{drop}} = I \times R \][/tex]
Here, [tex]\( R \)[/tex] is the resistance of the wire. Rearranging the formula to solve for [tex]\( R \)[/tex]:
[tex]\[ R = \frac{V_{\text{drop}}}{I} \][/tex]
Substituting the values:
[tex]\[ R = \frac{10 \, \text{V}}{20 \, \text{A}} = 0.5 \, \Omega \][/tex]
4. Relate the resistance to the physical properties of the wire:
The resistance [tex]\( R \)[/tex] of a wire is also related to the resistivity ([tex]\( \rho \)[/tex]), length ([tex]\( L \)[/tex]), and cross-sectional area ([tex]\( A \)[/tex]) by the formula:
[tex]\[ R = \rho \frac{L}{A} \][/tex]
Since the current flows to the motor and back, the total length of the wire is [tex]\( 2d \)[/tex]. Therefore, substituting [tex]\( L = 2d \)[/tex]:
[tex]\[ R = \rho \frac{2d}{A} \][/tex]
Solving for [tex]\( A \)[/tex]:
[tex]\[ A = \rho \frac{2d}{R} \][/tex]
5. Calculate the minimum cross-sectional area:
Now substitute the known values into the formula:
[tex]\[ A = \left( 1.68 \times 10^{-8} \, \Omega \cdot \text{m} \right) \frac{2 \times 15 \, \text{m}}{0.5 \, \Omega} \][/tex]
Simplifying this:
[tex]\[ A = \frac{1.68 \times 10^{-8} \, \Omega \cdot \text{m} \times 30 \, \text{m}}{0.5 \, \Omega} \][/tex]
[tex]\[ A = \frac{50.4 \times 10^{-8} \, \Omega \cdot \text{m}^2}{0.5 \, \Omega} \][/tex]
[tex]\[ A = 1.008 \times 10^{-6} \, \text{m}^2 \][/tex]
Thus, the minimum cross-sectional area of the wire that can be used, ensuring the voltage at the motor is not lower than 230 V, is [tex]\(1.008 \times 10^{-6}\)[/tex] square meters.
1. Identify the given values:
- Current ([tex]\( I \)[/tex]) = 20 A
- Voltage of the power source ([tex]\( V_{\text{source}} \)[/tex]) = 240 V
- Voltage at the motor ([tex]\( V_{\text{motor}} \)[/tex]) = 230 V
- Distance from the power source to the motor ([tex]\( d \)[/tex]) = 15 m
- Resistivity of copper ([tex]\( \rho \)[/tex]) = [tex]\( 1.68 \times 10^{-8} \)[/tex] ohm-meter
2. Calculate the allowable voltage drop:
The voltage drop ([tex]\( V_{\text{drop}} \)[/tex]) can be calculated using the difference between the voltage of the power source and the voltage at the motor.
[tex]\[ V_{\text{drop}} = V_{\text{source}} - V_{\text{motor}} \][/tex]
Substituting the given values:
[tex]\[ V_{\text{drop}} = 240 \, \text{V} - 230 \, \text{V} = 10 \, \text{V} \][/tex]
3. Determine the resistance of the wire:
The voltage drop ([tex]\( V_{\text{drop}} \)[/tex]) across a wire can be expressed using Ohm's Law:
[tex]\[ V_{\text{drop}} = I \times R \][/tex]
Here, [tex]\( R \)[/tex] is the resistance of the wire. Rearranging the formula to solve for [tex]\( R \)[/tex]:
[tex]\[ R = \frac{V_{\text{drop}}}{I} \][/tex]
Substituting the values:
[tex]\[ R = \frac{10 \, \text{V}}{20 \, \text{A}} = 0.5 \, \Omega \][/tex]
4. Relate the resistance to the physical properties of the wire:
The resistance [tex]\( R \)[/tex] of a wire is also related to the resistivity ([tex]\( \rho \)[/tex]), length ([tex]\( L \)[/tex]), and cross-sectional area ([tex]\( A \)[/tex]) by the formula:
[tex]\[ R = \rho \frac{L}{A} \][/tex]
Since the current flows to the motor and back, the total length of the wire is [tex]\( 2d \)[/tex]. Therefore, substituting [tex]\( L = 2d \)[/tex]:
[tex]\[ R = \rho \frac{2d}{A} \][/tex]
Solving for [tex]\( A \)[/tex]:
[tex]\[ A = \rho \frac{2d}{R} \][/tex]
5. Calculate the minimum cross-sectional area:
Now substitute the known values into the formula:
[tex]\[ A = \left( 1.68 \times 10^{-8} \, \Omega \cdot \text{m} \right) \frac{2 \times 15 \, \text{m}}{0.5 \, \Omega} \][/tex]
Simplifying this:
[tex]\[ A = \frac{1.68 \times 10^{-8} \, \Omega \cdot \text{m} \times 30 \, \text{m}}{0.5 \, \Omega} \][/tex]
[tex]\[ A = \frac{50.4 \times 10^{-8} \, \Omega \cdot \text{m}^2}{0.5 \, \Omega} \][/tex]
[tex]\[ A = 1.008 \times 10^{-6} \, \text{m}^2 \][/tex]
Thus, the minimum cross-sectional area of the wire that can be used, ensuring the voltage at the motor is not lower than 230 V, is [tex]\(1.008 \times 10^{-6}\)[/tex] square meters.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.