At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, let's solve this problem step by step.
1. Determine the mass of water lost during heating:
When the hydrated copper sulphate is heated, it loses water. The mass of water lost can be calculated by subtracting the mass of the anhydrous copper sulphate from the mass of the hydrated copper sulphate.
[tex]\[ \text{Mass of water lost} = \text{Mass of hydrated copper sulphate} - \text{Mass of anhydrous copper sulphate} \][/tex]
Given:
[tex]\[ \text{Mass of hydrated copper sulphate} = 11.25 \, \text{g} \][/tex]
[tex]\[ \text{Mass of anhydrous copper sulphate} = 7.19 \, \text{g} \][/tex]
Therefore:
[tex]\[ \text{Mass of water lost} = 11.25 \, \text{g} - 7.19 \, \text{g} = 4.06 \, \text{g} \][/tex]
2. Calculate the moles of anhydrous copper sulphate [tex]\( \text{CuSO}_4 \)[/tex]:
To find the moles of anhydrous copper sulphate, we use its molar mass. The molar mass of [tex]\(\text{CuSO}_4\)[/tex] is:
[tex]\[ \text{Molar mass of CuSO}_4 = 159.61 \, \text{g/mol} \][/tex]
Using the formula [tex]\( \text{Moles} = \frac{\text{Mass}}{\text{Molar Mass}} \)[/tex], we get:
[tex]\[ \text{Moles of CuSO}_4 = \frac{7.19 \, \text{g}}{159.61 \, \text{g/mol}} = 0.0450473028005764 \, \text{mol} \][/tex]
3. Calculate the moles of water lost [tex]\( \text{H}_2\text{O} \)[/tex]:
To find the moles of water, we use the molar mass of water. The molar mass of [tex]\(\text{H}_2\text{O}\)[/tex] is:
[tex]\[ \text{Molar mass of H}_2\text{O} = 18.015 \, \text{g/mol} \][/tex]
Thus:
[tex]\[ \text{Moles of H}_2\text{O} = \frac{4.06 \, \text{g}}{18.015 \, \text{g/mol}} = 0.22536774909797389 \, \text{mol} \][/tex]
4. Determine the value of [tex]\( x \)[/tex]:
The value of [tex]\( x \)[/tex] is the ratio of the moles of water to the moles of anhydrous copper sulphate.
[tex]\[ x = \frac{\text{Moles of H}_2\text{O}}{\text{Moles of CuSO}_4} = \frac{0.22536774909797389 \, \text{mol}}{0.0450473028005764 \, \text{mol}} = 5.002913273091463 \][/tex]
Rounding [tex]\( x \)[/tex] to the nearest whole number, we find:
[tex]\[ x \approx 5 \][/tex]
Therefore, the value of [tex]\( x \)[/tex] in the hydrated copper sulphate [tex]\(\text{CuSO}_4 \cdot xH_2O\)[/tex] is 5.
1. Determine the mass of water lost during heating:
When the hydrated copper sulphate is heated, it loses water. The mass of water lost can be calculated by subtracting the mass of the anhydrous copper sulphate from the mass of the hydrated copper sulphate.
[tex]\[ \text{Mass of water lost} = \text{Mass of hydrated copper sulphate} - \text{Mass of anhydrous copper sulphate} \][/tex]
Given:
[tex]\[ \text{Mass of hydrated copper sulphate} = 11.25 \, \text{g} \][/tex]
[tex]\[ \text{Mass of anhydrous copper sulphate} = 7.19 \, \text{g} \][/tex]
Therefore:
[tex]\[ \text{Mass of water lost} = 11.25 \, \text{g} - 7.19 \, \text{g} = 4.06 \, \text{g} \][/tex]
2. Calculate the moles of anhydrous copper sulphate [tex]\( \text{CuSO}_4 \)[/tex]:
To find the moles of anhydrous copper sulphate, we use its molar mass. The molar mass of [tex]\(\text{CuSO}_4\)[/tex] is:
[tex]\[ \text{Molar mass of CuSO}_4 = 159.61 \, \text{g/mol} \][/tex]
Using the formula [tex]\( \text{Moles} = \frac{\text{Mass}}{\text{Molar Mass}} \)[/tex], we get:
[tex]\[ \text{Moles of CuSO}_4 = \frac{7.19 \, \text{g}}{159.61 \, \text{g/mol}} = 0.0450473028005764 \, \text{mol} \][/tex]
3. Calculate the moles of water lost [tex]\( \text{H}_2\text{O} \)[/tex]:
To find the moles of water, we use the molar mass of water. The molar mass of [tex]\(\text{H}_2\text{O}\)[/tex] is:
[tex]\[ \text{Molar mass of H}_2\text{O} = 18.015 \, \text{g/mol} \][/tex]
Thus:
[tex]\[ \text{Moles of H}_2\text{O} = \frac{4.06 \, \text{g}}{18.015 \, \text{g/mol}} = 0.22536774909797389 \, \text{mol} \][/tex]
4. Determine the value of [tex]\( x \)[/tex]:
The value of [tex]\( x \)[/tex] is the ratio of the moles of water to the moles of anhydrous copper sulphate.
[tex]\[ x = \frac{\text{Moles of H}_2\text{O}}{\text{Moles of CuSO}_4} = \frac{0.22536774909797389 \, \text{mol}}{0.0450473028005764 \, \text{mol}} = 5.002913273091463 \][/tex]
Rounding [tex]\( x \)[/tex] to the nearest whole number, we find:
[tex]\[ x \approx 5 \][/tex]
Therefore, the value of [tex]\( x \)[/tex] in the hydrated copper sulphate [tex]\(\text{CuSO}_4 \cdot xH_2O\)[/tex] is 5.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.