Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the quadratic equation [tex]\( x^2 + 5x - 6 = 0 \)[/tex], we can follow these steps:
1. Identify the coefficients: The standard form of a quadratic equation is [tex]\( ax^2 + bx + c = 0 \)[/tex]. In this equation, [tex]\( a = 1 \)[/tex], [tex]\( b = 5 \)[/tex], and [tex]\( c = -6 \)[/tex].
2. Set up the equation: With the given coefficients, our quadratic equation is:
[tex]\[ x^2 + 5x - 6 = 0 \][/tex]
3. Solve the quadratic equation by factoring: We look for two numbers that multiply to [tex]\( ac \)[/tex] (where [tex]\( a = 1 \)[/tex] and [tex]\( c = -6 \)[/tex]) and add up to [tex]\( b = 5 \)[/tex]. In this case, we are looking for two numbers that multiply to [tex]\(-6\)[/tex] and add to [tex]\(5\)[/tex].
- Factors of [tex]\(-6\)[/tex] that add up to [tex]\(5\)[/tex] are [tex]\(6\)[/tex] and [tex]\(-1\)[/tex].
4. Rewrite the middle term using these factors:
[tex]\[ x^2 + 6x - x - 6 = 0 \][/tex]
5. Factor by grouping: Group the terms in pairs and factor out the common factors from each pair:
[tex]\[ (x^2 + 6x) + (-x - 6) = 0 \][/tex]
[tex]\[ x(x + 6) - 1(x + 6) = 0 \][/tex]
6. Factor out the common binomial factor:
[tex]\[ (x - 1)(x + 6) = 0 \][/tex]
7. Set each factor equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x - 1 = 0 \quad \text{or} \quad x + 6 = 0 \][/tex]
[tex]\[ x = 1 \quad \text{or} \quad x = -6 \][/tex]
So, the solutions to the equation [tex]\( x^2 + 5x - 6 = 0 \)[/tex] are [tex]\( \boxed{-6 \text{ and } 1} \)[/tex].
1. Identify the coefficients: The standard form of a quadratic equation is [tex]\( ax^2 + bx + c = 0 \)[/tex]. In this equation, [tex]\( a = 1 \)[/tex], [tex]\( b = 5 \)[/tex], and [tex]\( c = -6 \)[/tex].
2. Set up the equation: With the given coefficients, our quadratic equation is:
[tex]\[ x^2 + 5x - 6 = 0 \][/tex]
3. Solve the quadratic equation by factoring: We look for two numbers that multiply to [tex]\( ac \)[/tex] (where [tex]\( a = 1 \)[/tex] and [tex]\( c = -6 \)[/tex]) and add up to [tex]\( b = 5 \)[/tex]. In this case, we are looking for two numbers that multiply to [tex]\(-6\)[/tex] and add to [tex]\(5\)[/tex].
- Factors of [tex]\(-6\)[/tex] that add up to [tex]\(5\)[/tex] are [tex]\(6\)[/tex] and [tex]\(-1\)[/tex].
4. Rewrite the middle term using these factors:
[tex]\[ x^2 + 6x - x - 6 = 0 \][/tex]
5. Factor by grouping: Group the terms in pairs and factor out the common factors from each pair:
[tex]\[ (x^2 + 6x) + (-x - 6) = 0 \][/tex]
[tex]\[ x(x + 6) - 1(x + 6) = 0 \][/tex]
6. Factor out the common binomial factor:
[tex]\[ (x - 1)(x + 6) = 0 \][/tex]
7. Set each factor equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x - 1 = 0 \quad \text{or} \quad x + 6 = 0 \][/tex]
[tex]\[ x = 1 \quad \text{or} \quad x = -6 \][/tex]
So, the solutions to the equation [tex]\( x^2 + 5x - 6 = 0 \)[/tex] are [tex]\( \boxed{-6 \text{ and } 1} \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.