Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the quadratic equation [tex]\( x^2 + 5x - 6 = 0 \)[/tex], we can follow these steps:
1. Identify the coefficients: The standard form of a quadratic equation is [tex]\( ax^2 + bx + c = 0 \)[/tex]. In this equation, [tex]\( a = 1 \)[/tex], [tex]\( b = 5 \)[/tex], and [tex]\( c = -6 \)[/tex].
2. Set up the equation: With the given coefficients, our quadratic equation is:
[tex]\[ x^2 + 5x - 6 = 0 \][/tex]
3. Solve the quadratic equation by factoring: We look for two numbers that multiply to [tex]\( ac \)[/tex] (where [tex]\( a = 1 \)[/tex] and [tex]\( c = -6 \)[/tex]) and add up to [tex]\( b = 5 \)[/tex]. In this case, we are looking for two numbers that multiply to [tex]\(-6\)[/tex] and add to [tex]\(5\)[/tex].
- Factors of [tex]\(-6\)[/tex] that add up to [tex]\(5\)[/tex] are [tex]\(6\)[/tex] and [tex]\(-1\)[/tex].
4. Rewrite the middle term using these factors:
[tex]\[ x^2 + 6x - x - 6 = 0 \][/tex]
5. Factor by grouping: Group the terms in pairs and factor out the common factors from each pair:
[tex]\[ (x^2 + 6x) + (-x - 6) = 0 \][/tex]
[tex]\[ x(x + 6) - 1(x + 6) = 0 \][/tex]
6. Factor out the common binomial factor:
[tex]\[ (x - 1)(x + 6) = 0 \][/tex]
7. Set each factor equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x - 1 = 0 \quad \text{or} \quad x + 6 = 0 \][/tex]
[tex]\[ x = 1 \quad \text{or} \quad x = -6 \][/tex]
So, the solutions to the equation [tex]\( x^2 + 5x - 6 = 0 \)[/tex] are [tex]\( \boxed{-6 \text{ and } 1} \)[/tex].
1. Identify the coefficients: The standard form of a quadratic equation is [tex]\( ax^2 + bx + c = 0 \)[/tex]. In this equation, [tex]\( a = 1 \)[/tex], [tex]\( b = 5 \)[/tex], and [tex]\( c = -6 \)[/tex].
2. Set up the equation: With the given coefficients, our quadratic equation is:
[tex]\[ x^2 + 5x - 6 = 0 \][/tex]
3. Solve the quadratic equation by factoring: We look for two numbers that multiply to [tex]\( ac \)[/tex] (where [tex]\( a = 1 \)[/tex] and [tex]\( c = -6 \)[/tex]) and add up to [tex]\( b = 5 \)[/tex]. In this case, we are looking for two numbers that multiply to [tex]\(-6\)[/tex] and add to [tex]\(5\)[/tex].
- Factors of [tex]\(-6\)[/tex] that add up to [tex]\(5\)[/tex] are [tex]\(6\)[/tex] and [tex]\(-1\)[/tex].
4. Rewrite the middle term using these factors:
[tex]\[ x^2 + 6x - x - 6 = 0 \][/tex]
5. Factor by grouping: Group the terms in pairs and factor out the common factors from each pair:
[tex]\[ (x^2 + 6x) + (-x - 6) = 0 \][/tex]
[tex]\[ x(x + 6) - 1(x + 6) = 0 \][/tex]
6. Factor out the common binomial factor:
[tex]\[ (x - 1)(x + 6) = 0 \][/tex]
7. Set each factor equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x - 1 = 0 \quad \text{or} \quad x + 6 = 0 \][/tex]
[tex]\[ x = 1 \quad \text{or} \quad x = -6 \][/tex]
So, the solutions to the equation [tex]\( x^2 + 5x - 6 = 0 \)[/tex] are [tex]\( \boxed{-6 \text{ and } 1} \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.