At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the problem, we need to determine the general structure of the arithmetic progression (AP) and the specific term where the value is 28.
Let's denote:
- The 3rd term of the AP as [tex]\( a_3 = 40 \)[/tex] (assuming "Fo" corresponds to 40).
- The 13th term of the AP as [tex]\( a_{13} = 0 \)[/tex].
The general formula for the [tex]\(n\)[/tex]-th term of an AP is given by:
[tex]\[ a_n = a + (n-1)d \][/tex]
where
- [tex]\(a\)[/tex] is the first term,
- [tex]\(d\)[/tex] is the common difference.
First, write down the equations for the 3rd and 13th terms using the general formula:
[tex]\[ a_3 = a + 2d = 40 \][/tex]
[tex]\[ a_{13} = a + 12d = 0 \][/tex]
Now, let's solve these two equations simultaneously to find [tex]\(a\)[/tex] and [tex]\(d\)[/tex].
### Step 1: Subtract the first equation from the second
[tex]\[ (a + 12d) - (a + 2d) = 0 - 40 \][/tex]
[tex]\[ a + 12d - a - 2d = -40 \][/tex]
[tex]\[ 10d = -40 \][/tex]
[tex]\[ d = -4 \][/tex]
### Step 2: Substitute [tex]\(d\)[/tex] back into one of the original equations to find [tex]\(a\)[/tex]
Using the equation [tex]\(a + 2d = 40\)[/tex]:
[tex]\[ a + 2(-4) = 40 \][/tex]
[tex]\[ a - 8 = 40 \][/tex]
[tex]\[ a = 48 \][/tex]
Now we know the first term [tex]\(a = 48\)[/tex] and the common difference [tex]\(d = -4\)[/tex].
### Step 3: Determine the term number where the term value is 28
We need to find [tex]\(n\)[/tex] such that [tex]\(a_n = 28\)[/tex]:
[tex]\[ 28 = a + (n-1)d \][/tex]
Substitute the values of [tex]\(a\)[/tex] and [tex]\(d\)[/tex]:
[tex]\[ 28 = 48 + (n-1)(-4) \][/tex]
[tex]\[ 28 = 48 - 4(n-1) \][/tex]
[tex]\[ 28 - 48 = -4(n-1) \][/tex]
[tex]\[ -20 = -4(n-1) \][/tex]
[tex]\[ 5 = n-1 \][/tex]
[tex]\[ n = 6 \][/tex]
Therefore, the term of the AP that is 28 is the 6th term.
Let's denote:
- The 3rd term of the AP as [tex]\( a_3 = 40 \)[/tex] (assuming "Fo" corresponds to 40).
- The 13th term of the AP as [tex]\( a_{13} = 0 \)[/tex].
The general formula for the [tex]\(n\)[/tex]-th term of an AP is given by:
[tex]\[ a_n = a + (n-1)d \][/tex]
where
- [tex]\(a\)[/tex] is the first term,
- [tex]\(d\)[/tex] is the common difference.
First, write down the equations for the 3rd and 13th terms using the general formula:
[tex]\[ a_3 = a + 2d = 40 \][/tex]
[tex]\[ a_{13} = a + 12d = 0 \][/tex]
Now, let's solve these two equations simultaneously to find [tex]\(a\)[/tex] and [tex]\(d\)[/tex].
### Step 1: Subtract the first equation from the second
[tex]\[ (a + 12d) - (a + 2d) = 0 - 40 \][/tex]
[tex]\[ a + 12d - a - 2d = -40 \][/tex]
[tex]\[ 10d = -40 \][/tex]
[tex]\[ d = -4 \][/tex]
### Step 2: Substitute [tex]\(d\)[/tex] back into one of the original equations to find [tex]\(a\)[/tex]
Using the equation [tex]\(a + 2d = 40\)[/tex]:
[tex]\[ a + 2(-4) = 40 \][/tex]
[tex]\[ a - 8 = 40 \][/tex]
[tex]\[ a = 48 \][/tex]
Now we know the first term [tex]\(a = 48\)[/tex] and the common difference [tex]\(d = -4\)[/tex].
### Step 3: Determine the term number where the term value is 28
We need to find [tex]\(n\)[/tex] such that [tex]\(a_n = 28\)[/tex]:
[tex]\[ 28 = a + (n-1)d \][/tex]
Substitute the values of [tex]\(a\)[/tex] and [tex]\(d\)[/tex]:
[tex]\[ 28 = 48 + (n-1)(-4) \][/tex]
[tex]\[ 28 = 48 - 4(n-1) \][/tex]
[tex]\[ 28 - 48 = -4(n-1) \][/tex]
[tex]\[ -20 = -4(n-1) \][/tex]
[tex]\[ 5 = n-1 \][/tex]
[tex]\[ n = 6 \][/tex]
Therefore, the term of the AP that is 28 is the 6th term.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.