Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the solutions to the system of nonlinear equations given by:
[tex]\[ \begin{cases} y = -5x - 5 \\ y = x^2 - 5 \end{cases} \][/tex]
we need to solve these equations simultaneously. Here's a detailed, step-by-step process to find the solutions:
1. Set the two equations equal to each other:
Since both equations are equal to [tex]\( y \)[/tex], we can set the right-hand side of the first equation equal to the right-hand side of the second equation:
[tex]\[ -5x - 5 = x^2 - 5 \][/tex]
2. Simplify the equation:
To solve for [tex]\( x \)[/tex], we want to combine like terms and set the equation to zero:
[tex]\[ x^2 + 5x = 0 \][/tex]
3. Factor the quadratic equation:
Factor out the common term [tex]\( x \)[/tex] from the quadratic expression:
[tex]\[ x(x + 5) = 0 \][/tex]
4. Solve for [tex]\( x \)[/tex]:
We find the solutions for [tex]\( x \)[/tex] by setting each factor equal to zero:
[tex]\[ x = 0 \quad \text{or} \quad x + 5 = 0 \][/tex]
This gives us:
[tex]\[ x = 0 \quad \text{or} \quad x = -5 \][/tex]
5. Find the corresponding [tex]\( y \)[/tex] values:
Substitute the [tex]\( x \)[/tex]-values back into one of the original equations to find the corresponding [tex]\( y \)[/tex]-values. We can use the first equation [tex]\( y = -5x - 5 \)[/tex]:
- For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = -5(0) - 5 = -5 \][/tex]
- For [tex]\( x = -5 \)[/tex]:
[tex]\[ y = -5(-5) - 5 = 25 - 5 = 20 \][/tex]
6. List the solutions as ordered pairs:
The solutions to the system of equations are:
[tex]\[ (x, y) = \left\{ (-5, 20), (0, -5) \right\} \][/tex]
Therefore, the solutions to the given system of equations are:
[tex]\[ (x, y) = \left\{ (-5, 20), (0, -5) \right\} \][/tex]
Or as a list of ordered pairs:
[tex]\[ [(-5.0, 20.0), (0.0, -5.0)] \][/tex]
[tex]\[ \begin{cases} y = -5x - 5 \\ y = x^2 - 5 \end{cases} \][/tex]
we need to solve these equations simultaneously. Here's a detailed, step-by-step process to find the solutions:
1. Set the two equations equal to each other:
Since both equations are equal to [tex]\( y \)[/tex], we can set the right-hand side of the first equation equal to the right-hand side of the second equation:
[tex]\[ -5x - 5 = x^2 - 5 \][/tex]
2. Simplify the equation:
To solve for [tex]\( x \)[/tex], we want to combine like terms and set the equation to zero:
[tex]\[ x^2 + 5x = 0 \][/tex]
3. Factor the quadratic equation:
Factor out the common term [tex]\( x \)[/tex] from the quadratic expression:
[tex]\[ x(x + 5) = 0 \][/tex]
4. Solve for [tex]\( x \)[/tex]:
We find the solutions for [tex]\( x \)[/tex] by setting each factor equal to zero:
[tex]\[ x = 0 \quad \text{or} \quad x + 5 = 0 \][/tex]
This gives us:
[tex]\[ x = 0 \quad \text{or} \quad x = -5 \][/tex]
5. Find the corresponding [tex]\( y \)[/tex] values:
Substitute the [tex]\( x \)[/tex]-values back into one of the original equations to find the corresponding [tex]\( y \)[/tex]-values. We can use the first equation [tex]\( y = -5x - 5 \)[/tex]:
- For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = -5(0) - 5 = -5 \][/tex]
- For [tex]\( x = -5 \)[/tex]:
[tex]\[ y = -5(-5) - 5 = 25 - 5 = 20 \][/tex]
6. List the solutions as ordered pairs:
The solutions to the system of equations are:
[tex]\[ (x, y) = \left\{ (-5, 20), (0, -5) \right\} \][/tex]
Therefore, the solutions to the given system of equations are:
[tex]\[ (x, y) = \left\{ (-5, 20), (0, -5) \right\} \][/tex]
Or as a list of ordered pairs:
[tex]\[ [(-5.0, 20.0), (0.0, -5.0)] \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.