Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the equation [tex]\( 2^x + 2^{x-1} - 48 = 0 \)[/tex], let's follow these logical steps.
1. Rewrite the Equation:
Notice that [tex]\( 2^{x-1} \)[/tex] can be written as [tex]\( \frac{2^x}{2} \)[/tex]. Therefore, the given equation can be rewritten as:
[tex]\[ 2^x + \frac{2^x}{2} - 48 = 0 \][/tex]
2. Combine Like Terms:
Combine the terms involving [tex]\( 2^x \)[/tex]. We express [tex]\( 2^x + \frac{2^x}{2} \)[/tex] with a common factor:
[tex]\[ 2^x + \frac{2^x}{2} = 2^x \left(1 + \frac{1}{2}\right) = 2^x \left(\frac{3}{2}\right) \][/tex]
Hence, the equation becomes:
[tex]\[ \frac{3}{2} \cdot 2^x - 48 = 0 \][/tex]
3. Isolate the Exponential Expression:
To isolate [tex]\( 2^x \)[/tex], multiply both sides of the equation by [tex]\(\frac{2}{3}\)[/tex]:
[tex]\[ 2^x = 48 \cdot \frac{2}{3} \][/tex]
Simplifying the right-hand side:
[tex]\[ 2^x = 32 \][/tex]
4. Solve for [tex]\( x \)[/tex]:
We know that [tex]\( 32 \)[/tex] can be expressed as a power of [tex]\( 2 \)[/tex]. Specifically:
[tex]\[ 32 = 2^5 \][/tex]
Thus, we have:
[tex]\[ 2^x = 2^5 \][/tex]
5. Equating the Exponents:
Since the bases are the same, we can equate the exponents:
[tex]\[ x = 5 \][/tex]
Therefore, the solution to the equation [tex]\( 2^x + 2^{x-1} - 48 = 0 \)[/tex] is:
[tex]\[ x = 5 \][/tex]
1. Rewrite the Equation:
Notice that [tex]\( 2^{x-1} \)[/tex] can be written as [tex]\( \frac{2^x}{2} \)[/tex]. Therefore, the given equation can be rewritten as:
[tex]\[ 2^x + \frac{2^x}{2} - 48 = 0 \][/tex]
2. Combine Like Terms:
Combine the terms involving [tex]\( 2^x \)[/tex]. We express [tex]\( 2^x + \frac{2^x}{2} \)[/tex] with a common factor:
[tex]\[ 2^x + \frac{2^x}{2} = 2^x \left(1 + \frac{1}{2}\right) = 2^x \left(\frac{3}{2}\right) \][/tex]
Hence, the equation becomes:
[tex]\[ \frac{3}{2} \cdot 2^x - 48 = 0 \][/tex]
3. Isolate the Exponential Expression:
To isolate [tex]\( 2^x \)[/tex], multiply both sides of the equation by [tex]\(\frac{2}{3}\)[/tex]:
[tex]\[ 2^x = 48 \cdot \frac{2}{3} \][/tex]
Simplifying the right-hand side:
[tex]\[ 2^x = 32 \][/tex]
4. Solve for [tex]\( x \)[/tex]:
We know that [tex]\( 32 \)[/tex] can be expressed as a power of [tex]\( 2 \)[/tex]. Specifically:
[tex]\[ 32 = 2^5 \][/tex]
Thus, we have:
[tex]\[ 2^x = 2^5 \][/tex]
5. Equating the Exponents:
Since the bases are the same, we can equate the exponents:
[tex]\[ x = 5 \][/tex]
Therefore, the solution to the equation [tex]\( 2^x + 2^{x-1} - 48 = 0 \)[/tex] is:
[tex]\[ x = 5 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.