Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the enthalpy of formation ([tex]\(\Delta H_f\)[/tex]) for [tex]\(O_2(g)\)[/tex], we'll follow these steps:
1. Write the balanced chemical equation:
[tex]\[ C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l) \][/tex]
2. Understand the given enthalpies of formation:
[tex]\[ \Delta H_f \text{ for } C_6H_{12}O_6(s) = -1273.02 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_f \text{ for } CO_2(g) = -393.5 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_f \text{ for } H_2O(l) = -285.83 \, \text{kJ/mol} \][/tex]
3. Recall the enthalpy change for the reaction ([tex]\(\Delta H_{\text{reaction}}\)[/tex]) is calculated with the formula:
[tex]\[ \Delta H_{\text{reaction}} = \left( \sum \Delta H_f \text{ of products} \right) - \left( \sum \Delta H_f \text{ of reactants} \right) \][/tex]
4. Calculate the total enthalpy of the products:
[tex]\[ \Delta H_{\text{products}} = 6 \times \Delta H_f \text{ (CO}_2\text{)} + 6 \times \Delta H_f \text{ (H}_2\text{O)} \][/tex]
[tex]\[ \Delta H_{\text{products}} = 6 \times (-393.5 \, \text{kJ/mol}) + 6 \times (-285.83 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta H_{\text{products}} = 6 \times (-393.5) + 6 \times (-285.83) \][/tex]
[tex]\[ \Delta H_{\text{products}} = -2361 \, \text{kJ/mol} + (-1714.98 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta H_{\text{products}} = -4075.98 \, \text{kJ/mol} \][/tex]
5. Calculate the total enthalpy of the reactants:
[tex]\[ \Delta H_{\text{reactants}} = \Delta H_f \text{ (C}_6\text{H}_{12}\text{O}_6\text{)} + 6 \times \Delta H_f \text{ (O}_2\text{)} \][/tex]
Given that:
[tex]\[ \Delta H_f \text{ of O}_2\text{(g)} = 0 \text{ kJ/mol (by convention)} \][/tex]
[tex]\[ \Delta H_{\text{reactants}} = -1273.02 \, \text{kJ/mol} + 6 \times 0 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_{\text{reactants}} = -1273.02 \, \text{kJ/mol} \][/tex]
6. Now, calculate [tex]\(\Delta H_{\text{reaction}}\)[/tex]:
[tex]\[ \Delta H_{\text{reaction}} = \Delta H_{\text{products}} - \Delta H_{\text{reactants}} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -4075.98 \, \text{kJ/mol} - (-1273.02 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -4075.98 \, \text{kJ/mol} + 1273.02 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -2802.96 \, \text{kJ/mol} \][/tex]
Finally, since we are trying to find the [tex]\(\Delta H_f\)[/tex] for [tex]\(O_2(g)\)[/tex] and it's a standard convention that [tex]\(\Delta H_f\)[/tex] for [tex]\(O_2(g)\)[/tex] is exactly:
[tex]\[ \Delta H_f \text{ of } O_2(g) = 0 \text{ kJ/mol} \][/tex]
The answer to the question is [tex]\(0 \text{ kJ/mol}\)[/tex].
So, the correct answer is:
- exactly [tex]\(0 \text{ kJ/mol}\)[/tex].
1. Write the balanced chemical equation:
[tex]\[ C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l) \][/tex]
2. Understand the given enthalpies of formation:
[tex]\[ \Delta H_f \text{ for } C_6H_{12}O_6(s) = -1273.02 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_f \text{ for } CO_2(g) = -393.5 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_f \text{ for } H_2O(l) = -285.83 \, \text{kJ/mol} \][/tex]
3. Recall the enthalpy change for the reaction ([tex]\(\Delta H_{\text{reaction}}\)[/tex]) is calculated with the formula:
[tex]\[ \Delta H_{\text{reaction}} = \left( \sum \Delta H_f \text{ of products} \right) - \left( \sum \Delta H_f \text{ of reactants} \right) \][/tex]
4. Calculate the total enthalpy of the products:
[tex]\[ \Delta H_{\text{products}} = 6 \times \Delta H_f \text{ (CO}_2\text{)} + 6 \times \Delta H_f \text{ (H}_2\text{O)} \][/tex]
[tex]\[ \Delta H_{\text{products}} = 6 \times (-393.5 \, \text{kJ/mol}) + 6 \times (-285.83 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta H_{\text{products}} = 6 \times (-393.5) + 6 \times (-285.83) \][/tex]
[tex]\[ \Delta H_{\text{products}} = -2361 \, \text{kJ/mol} + (-1714.98 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta H_{\text{products}} = -4075.98 \, \text{kJ/mol} \][/tex]
5. Calculate the total enthalpy of the reactants:
[tex]\[ \Delta H_{\text{reactants}} = \Delta H_f \text{ (C}_6\text{H}_{12}\text{O}_6\text{)} + 6 \times \Delta H_f \text{ (O}_2\text{)} \][/tex]
Given that:
[tex]\[ \Delta H_f \text{ of O}_2\text{(g)} = 0 \text{ kJ/mol (by convention)} \][/tex]
[tex]\[ \Delta H_{\text{reactants}} = -1273.02 \, \text{kJ/mol} + 6 \times 0 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_{\text{reactants}} = -1273.02 \, \text{kJ/mol} \][/tex]
6. Now, calculate [tex]\(\Delta H_{\text{reaction}}\)[/tex]:
[tex]\[ \Delta H_{\text{reaction}} = \Delta H_{\text{products}} - \Delta H_{\text{reactants}} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -4075.98 \, \text{kJ/mol} - (-1273.02 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -4075.98 \, \text{kJ/mol} + 1273.02 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -2802.96 \, \text{kJ/mol} \][/tex]
Finally, since we are trying to find the [tex]\(\Delta H_f\)[/tex] for [tex]\(O_2(g)\)[/tex] and it's a standard convention that [tex]\(\Delta H_f\)[/tex] for [tex]\(O_2(g)\)[/tex] is exactly:
[tex]\[ \Delta H_f \text{ of } O_2(g) = 0 \text{ kJ/mol} \][/tex]
The answer to the question is [tex]\(0 \text{ kJ/mol}\)[/tex].
So, the correct answer is:
- exactly [tex]\(0 \text{ kJ/mol}\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.