Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the enthalpy of formation ([tex]\(\Delta H_f\)[/tex]) for [tex]\(O_2(g)\)[/tex], we'll follow these steps:
1. Write the balanced chemical equation:
[tex]\[ C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l) \][/tex]
2. Understand the given enthalpies of formation:
[tex]\[ \Delta H_f \text{ for } C_6H_{12}O_6(s) = -1273.02 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_f \text{ for } CO_2(g) = -393.5 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_f \text{ for } H_2O(l) = -285.83 \, \text{kJ/mol} \][/tex]
3. Recall the enthalpy change for the reaction ([tex]\(\Delta H_{\text{reaction}}\)[/tex]) is calculated with the formula:
[tex]\[ \Delta H_{\text{reaction}} = \left( \sum \Delta H_f \text{ of products} \right) - \left( \sum \Delta H_f \text{ of reactants} \right) \][/tex]
4. Calculate the total enthalpy of the products:
[tex]\[ \Delta H_{\text{products}} = 6 \times \Delta H_f \text{ (CO}_2\text{)} + 6 \times \Delta H_f \text{ (H}_2\text{O)} \][/tex]
[tex]\[ \Delta H_{\text{products}} = 6 \times (-393.5 \, \text{kJ/mol}) + 6 \times (-285.83 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta H_{\text{products}} = 6 \times (-393.5) + 6 \times (-285.83) \][/tex]
[tex]\[ \Delta H_{\text{products}} = -2361 \, \text{kJ/mol} + (-1714.98 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta H_{\text{products}} = -4075.98 \, \text{kJ/mol} \][/tex]
5. Calculate the total enthalpy of the reactants:
[tex]\[ \Delta H_{\text{reactants}} = \Delta H_f \text{ (C}_6\text{H}_{12}\text{O}_6\text{)} + 6 \times \Delta H_f \text{ (O}_2\text{)} \][/tex]
Given that:
[tex]\[ \Delta H_f \text{ of O}_2\text{(g)} = 0 \text{ kJ/mol (by convention)} \][/tex]
[tex]\[ \Delta H_{\text{reactants}} = -1273.02 \, \text{kJ/mol} + 6 \times 0 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_{\text{reactants}} = -1273.02 \, \text{kJ/mol} \][/tex]
6. Now, calculate [tex]\(\Delta H_{\text{reaction}}\)[/tex]:
[tex]\[ \Delta H_{\text{reaction}} = \Delta H_{\text{products}} - \Delta H_{\text{reactants}} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -4075.98 \, \text{kJ/mol} - (-1273.02 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -4075.98 \, \text{kJ/mol} + 1273.02 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -2802.96 \, \text{kJ/mol} \][/tex]
Finally, since we are trying to find the [tex]\(\Delta H_f\)[/tex] for [tex]\(O_2(g)\)[/tex] and it's a standard convention that [tex]\(\Delta H_f\)[/tex] for [tex]\(O_2(g)\)[/tex] is exactly:
[tex]\[ \Delta H_f \text{ of } O_2(g) = 0 \text{ kJ/mol} \][/tex]
The answer to the question is [tex]\(0 \text{ kJ/mol}\)[/tex].
So, the correct answer is:
- exactly [tex]\(0 \text{ kJ/mol}\)[/tex].
1. Write the balanced chemical equation:
[tex]\[ C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l) \][/tex]
2. Understand the given enthalpies of formation:
[tex]\[ \Delta H_f \text{ for } C_6H_{12}O_6(s) = -1273.02 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_f \text{ for } CO_2(g) = -393.5 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_f \text{ for } H_2O(l) = -285.83 \, \text{kJ/mol} \][/tex]
3. Recall the enthalpy change for the reaction ([tex]\(\Delta H_{\text{reaction}}\)[/tex]) is calculated with the formula:
[tex]\[ \Delta H_{\text{reaction}} = \left( \sum \Delta H_f \text{ of products} \right) - \left( \sum \Delta H_f \text{ of reactants} \right) \][/tex]
4. Calculate the total enthalpy of the products:
[tex]\[ \Delta H_{\text{products}} = 6 \times \Delta H_f \text{ (CO}_2\text{)} + 6 \times \Delta H_f \text{ (H}_2\text{O)} \][/tex]
[tex]\[ \Delta H_{\text{products}} = 6 \times (-393.5 \, \text{kJ/mol}) + 6 \times (-285.83 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta H_{\text{products}} = 6 \times (-393.5) + 6 \times (-285.83) \][/tex]
[tex]\[ \Delta H_{\text{products}} = -2361 \, \text{kJ/mol} + (-1714.98 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta H_{\text{products}} = -4075.98 \, \text{kJ/mol} \][/tex]
5. Calculate the total enthalpy of the reactants:
[tex]\[ \Delta H_{\text{reactants}} = \Delta H_f \text{ (C}_6\text{H}_{12}\text{O}_6\text{)} + 6 \times \Delta H_f \text{ (O}_2\text{)} \][/tex]
Given that:
[tex]\[ \Delta H_f \text{ of O}_2\text{(g)} = 0 \text{ kJ/mol (by convention)} \][/tex]
[tex]\[ \Delta H_{\text{reactants}} = -1273.02 \, \text{kJ/mol} + 6 \times 0 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_{\text{reactants}} = -1273.02 \, \text{kJ/mol} \][/tex]
6. Now, calculate [tex]\(\Delta H_{\text{reaction}}\)[/tex]:
[tex]\[ \Delta H_{\text{reaction}} = \Delta H_{\text{products}} - \Delta H_{\text{reactants}} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -4075.98 \, \text{kJ/mol} - (-1273.02 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -4075.98 \, \text{kJ/mol} + 1273.02 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -2802.96 \, \text{kJ/mol} \][/tex]
Finally, since we are trying to find the [tex]\(\Delta H_f\)[/tex] for [tex]\(O_2(g)\)[/tex] and it's a standard convention that [tex]\(\Delta H_f\)[/tex] for [tex]\(O_2(g)\)[/tex] is exactly:
[tex]\[ \Delta H_f \text{ of } O_2(g) = 0 \text{ kJ/mol} \][/tex]
The answer to the question is [tex]\(0 \text{ kJ/mol}\)[/tex].
So, the correct answer is:
- exactly [tex]\(0 \text{ kJ/mol}\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.