Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the radius of the circle given by the equation [tex]\(2x^2 + 2y^2 = 50\)[/tex], follow these steps:
1. Rewrite the Circle Equation:
The given equation of the circle is [tex]\(2x^2 + 2y^2 = 50\)[/tex].
2. Simplify the Equation:
Divide both sides of the equation by 2 to simplify it:
[tex]\[ \frac{2x^2 + 2y^2}{2} = \frac{50}{2} \][/tex]
This simplifies to:
[tex]\[ x^2 + y^2 = 25 \][/tex]
3. Identify the Standard Form:
The standard form of a circle's equation is [tex]\(x^2 + y^2 = r^2\)[/tex], where [tex]\(r\)[/tex] is the radius.
4. Compare with Standard Form:
Comparing [tex]\(x^2 + y^2 = 25\)[/tex] with [tex]\(x^2 + y^2 = r^2\)[/tex], we see that [tex]\(r^2 = 25\)[/tex].
5. Solve for the Radius:
To find the radius [tex]\(r\)[/tex], take the square root of both sides:
[tex]\[ r = \sqrt{25} \][/tex]
Therefore, we have:
[tex]\[ r = 5.0 \][/tex]
So the radius of the circle is [tex]\(5.0\)[/tex].
The correct answer is:
(D) 5
1. Rewrite the Circle Equation:
The given equation of the circle is [tex]\(2x^2 + 2y^2 = 50\)[/tex].
2. Simplify the Equation:
Divide both sides of the equation by 2 to simplify it:
[tex]\[ \frac{2x^2 + 2y^2}{2} = \frac{50}{2} \][/tex]
This simplifies to:
[tex]\[ x^2 + y^2 = 25 \][/tex]
3. Identify the Standard Form:
The standard form of a circle's equation is [tex]\(x^2 + y^2 = r^2\)[/tex], where [tex]\(r\)[/tex] is the radius.
4. Compare with Standard Form:
Comparing [tex]\(x^2 + y^2 = 25\)[/tex] with [tex]\(x^2 + y^2 = r^2\)[/tex], we see that [tex]\(r^2 = 25\)[/tex].
5. Solve for the Radius:
To find the radius [tex]\(r\)[/tex], take the square root of both sides:
[tex]\[ r = \sqrt{25} \][/tex]
Therefore, we have:
[tex]\[ r = 5.0 \][/tex]
So the radius of the circle is [tex]\(5.0\)[/tex].
The correct answer is:
(D) 5
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.