At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the inverse function [tex]\( f^{-1}(x) \)[/tex] for the given function [tex]\( f(x) = 2x + 16 \)[/tex], we will follow these steps:
1. Set [tex]\( y \)[/tex] equal to [tex]\( f(x) \)[/tex]:
[tex]\[ y = 2x + 16 \][/tex]
2. Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to find the inverse function. This is because an inverse function reverses the roles of the independent and dependent variables:
[tex]\[ x = 2y + 16 \][/tex]
3. Solve for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]. This involves isolating [tex]\( y \)[/tex]:
a. Subtract 16 from both sides of the equation:
[tex]\[ x - 16 = 2y \][/tex]
b. Divide both sides by 2 to solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{x - 16}{2} \][/tex]
4. Write the inverse function:
Since [tex]\( y \)[/tex] is now expressed in terms of [tex]\( x \)[/tex], we denote this new function as [tex]\( f^{-1}(x) \)[/tex]:
[tex]\[ f^{-1}(x) = \frac{x - 16}{2} \][/tex]
So, the inverse function is:
[tex]\[ f^{-1}(x) = \frac{x - 16}{2} \][/tex]
1. Set [tex]\( y \)[/tex] equal to [tex]\( f(x) \)[/tex]:
[tex]\[ y = 2x + 16 \][/tex]
2. Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to find the inverse function. This is because an inverse function reverses the roles of the independent and dependent variables:
[tex]\[ x = 2y + 16 \][/tex]
3. Solve for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]. This involves isolating [tex]\( y \)[/tex]:
a. Subtract 16 from both sides of the equation:
[tex]\[ x - 16 = 2y \][/tex]
b. Divide both sides by 2 to solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{x - 16}{2} \][/tex]
4. Write the inverse function:
Since [tex]\( y \)[/tex] is now expressed in terms of [tex]\( x \)[/tex], we denote this new function as [tex]\( f^{-1}(x) \)[/tex]:
[tex]\[ f^{-1}(x) = \frac{x - 16}{2} \][/tex]
So, the inverse function is:
[tex]\[ f^{-1}(x) = \frac{x - 16}{2} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.