Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To prove that quadrilateral [tex]\(WXYZ\)[/tex] is a square, we need to show both that all four sides are of equal length and that the diagonals are also equal in length.
### Step-by-Step Solution
1. Identify the vertices:
- [tex]\(W(-1,1)\)[/tex]
- [tex]\(X(3,4)\)[/tex]
- [tex]\(Y(6,0)\)[/tex]
- [tex]\(Z(2,-3)\)[/tex]
2. Calculate the lengths of the sides using the distance formula:
The distance formula between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
3. Side lengths:
- [tex]\(d_{WX}\)[/tex]:
[tex]\[ \sqrt{(3 - (-1))^2 + (4 - 1)^2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5.0 \][/tex]
- [tex]\(d_{XY}\)[/tex]:
[tex]\[ \sqrt{(6 - 3)^2 + (0 - 4)^2} = \sqrt{3^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5.0 \][/tex]
- [tex]\(d_{YZ}\)[/tex]:
[tex]\[ \sqrt{(2 - 6)^2 + (-3 - 0)^2} = \sqrt{(-4)^2 + (-3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5.0 \][/tex]
- [tex]\(d_{ZW}\)[/tex]:
[tex]\[ \sqrt{(2 - (-1))^2 + (-3 - 1)^2} = \sqrt{3^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5.0 \][/tex]
4. Calculate the lengths of the diagonals:
- [tex]\(d_{WY}\)[/tex]:
[tex]\[ \sqrt{(6 - (-1))^2 + (0 - 1)^2} = \sqrt{7^2 + (-1)^2} = \sqrt{49 + 1} = \sqrt{50} = 7.0710678118654755 \][/tex]
- [tex]\(d_{XZ}\)[/tex]:
[tex]\[ \sqrt{(2 - 3)^2 + (-3 - 4)^2} = \sqrt{(-1)^2 + (-7)^2} = \sqrt{1 + 49} = \sqrt{50} = 7.0710678118654755 \][/tex]
5. Verify the conditions of a square:
- All sides are equal: [tex]\(d_{WX} = d_{XY} = d_{YZ} = d_{ZW} = 5.0\)[/tex]
- Both diagonals are equal: [tex]\(d_{WY} = d_{XZ} = 7.0710678118654755\)[/tex]
Since all four sides are equal and both diagonals are equal, quadrilateral [tex]\(WXYZ\)[/tex] meets the criteria to be classified as a square.
Thus, quadrilateral [tex]\(WXYZ\)[/tex] is indeed a square.
### Step-by-Step Solution
1. Identify the vertices:
- [tex]\(W(-1,1)\)[/tex]
- [tex]\(X(3,4)\)[/tex]
- [tex]\(Y(6,0)\)[/tex]
- [tex]\(Z(2,-3)\)[/tex]
2. Calculate the lengths of the sides using the distance formula:
The distance formula between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
3. Side lengths:
- [tex]\(d_{WX}\)[/tex]:
[tex]\[ \sqrt{(3 - (-1))^2 + (4 - 1)^2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5.0 \][/tex]
- [tex]\(d_{XY}\)[/tex]:
[tex]\[ \sqrt{(6 - 3)^2 + (0 - 4)^2} = \sqrt{3^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5.0 \][/tex]
- [tex]\(d_{YZ}\)[/tex]:
[tex]\[ \sqrt{(2 - 6)^2 + (-3 - 0)^2} = \sqrt{(-4)^2 + (-3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5.0 \][/tex]
- [tex]\(d_{ZW}\)[/tex]:
[tex]\[ \sqrt{(2 - (-1))^2 + (-3 - 1)^2} = \sqrt{3^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5.0 \][/tex]
4. Calculate the lengths of the diagonals:
- [tex]\(d_{WY}\)[/tex]:
[tex]\[ \sqrt{(6 - (-1))^2 + (0 - 1)^2} = \sqrt{7^2 + (-1)^2} = \sqrt{49 + 1} = \sqrt{50} = 7.0710678118654755 \][/tex]
- [tex]\(d_{XZ}\)[/tex]:
[tex]\[ \sqrt{(2 - 3)^2 + (-3 - 4)^2} = \sqrt{(-1)^2 + (-7)^2} = \sqrt{1 + 49} = \sqrt{50} = 7.0710678118654755 \][/tex]
5. Verify the conditions of a square:
- All sides are equal: [tex]\(d_{WX} = d_{XY} = d_{YZ} = d_{ZW} = 5.0\)[/tex]
- Both diagonals are equal: [tex]\(d_{WY} = d_{XZ} = 7.0710678118654755\)[/tex]
Since all four sides are equal and both diagonals are equal, quadrilateral [tex]\(WXYZ\)[/tex] meets the criteria to be classified as a square.
Thus, quadrilateral [tex]\(WXYZ\)[/tex] is indeed a square.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.