Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

What is the solution [tex]\((a, b)\)[/tex] to this system of linear equations?
[tex]\[
\begin{array}{l}
3a + 6b = 45 \\
2a - 2b = -12
\end{array}
\][/tex]

A. [tex]\((-27, 6)\)[/tex]
B. [tex]\((-1, 7)\)[/tex]
C. [tex]\((1, 7)\)[/tex]
D. [tex]\((27, -6)\)[/tex]


Sagot :

Let's solve the system of linear equations to find the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex]. The given system is:

[tex]\[ \begin{cases} 3a + 6b = 45 \\ 2a - 2b = -12 \end{cases} \][/tex]

Step 1: Simplify the equations if possible

Let's look at the second equation:

[tex]\[ 2a - 2b = -12 \][/tex]

We can divide every term by 2 to simplify:

[tex]\[ a - b = -6 \implies a = b - 6 \][/tex]

Now we have:

[tex]\[ 3a + 6b = 45 \][/tex]

Step 2: Substitute [tex]\( a \)[/tex] in the first equation

From the simplified second equation [tex]\( a = b - 6 \)[/tex], we substitute [tex]\( a \)[/tex] into the first equation:

[tex]\[ 3(b - 6) + 6b = 45 \][/tex]

Expand and simplify:

[tex]\[ 3b - 18 + 6b = 45 \][/tex]

Combine like terms:

[tex]\[ 9b - 18 = 45 \][/tex]

Add 18 to both sides:

[tex]\[ 9b = 63 \][/tex]

Divide by 9:

[tex]\[ b = 7 \][/tex]

Step 3: Find [tex]\( a \)[/tex]

Now that we have [tex]\( b \)[/tex], substitute [tex]\( b \)[/tex] back into [tex]\( a = b - 6 \)[/tex]:

[tex]\[ a = 7 - 6 = 1 \][/tex]

Thus, the solution to the system is [tex]\( (a, b) = (1, 7) \)[/tex].

Step 4: Verify the solution

To ensure that our solution is correct, substitute [tex]\( a = 1 \)[/tex] and [tex]\( b = 7 \)[/tex] back into the original equations:

First equation:

[tex]\[ 3(1) + 6(7) = 3 + 42 = 45 \quad \text{(Correct)} \][/tex]

Second equation:

[tex]\[ 2(1) - 2(7) = 2 - 14 = -12 \quad \text{(Correct)} \][/tex]

So, the solution is indeed correct.

The correct solution [tex]\( (a, b) \)[/tex] for the given system of linear equations is:

[tex]\[ (1, 7) \][/tex]

Among the given choices:
- [tex]\((-27, 6)\)[/tex]
- [tex]\((-1, 7)\)[/tex]
- [tex]\((1, 7)\)[/tex]
- [tex]\((27, -6)\)[/tex]

The solution is [tex]\( (1, 7) \)[/tex].