Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the possible rational zeros of the polynomial [tex]\( f(x) = -3x^4 - 9x^3 - 6x^2 - 8x + 14 \)[/tex], we can use the Rational Root Theorem. This theorem states that any possible rational root, in its lowest terms [tex]\( \frac{p}{q} \)[/tex], will have [tex]\( p \)[/tex] as a factor of the constant term (the term without [tex]\( x \)[/tex]) and [tex]\( q \)[/tex] as a factor of the leading coefficient (the coefficient of the term with the highest power of [tex]\( x \)[/tex]).
1. Identify the factors of the constant term (14):
The factors are: [tex]\( \pm 1, \pm 2, \pm 7, \pm 14 \)[/tex]
2. Identify the factors of the leading coefficient (-3):
The factors are: [tex]\( \pm 1, \pm 3 \)[/tex]
3. Form all possible rational numbers [tex]\( \frac{p}{q} \)[/tex] using these factors:
The possible rational numbers are obtained by dividing each factor of the constant term by each factor of the leading coefficient. This gives us:
- [tex]\( \frac{1}{1}, \frac{2}{1}, \frac{7}{1}, \frac{14}{1} \)[/tex]
- [tex]\( \frac{1}{3}, \frac{2}{3}, \frac{7}{3}, \frac{14}{3} \)[/tex]
- And their negatives [tex]\( -1, -2, -7, -14, -\frac{1}{3}, -\frac{2}{3}, -\frac{7}{3}, -\frac{14}{3} \)[/tex]
4. Combine and sort these possible zeros:
Arranging all these possibilities, we get:
[tex]\[ \pm 1, \pm 2, \pm 7, \pm 14, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{7}{3}, \pm \frac{14}{3} \][/tex]
Thus, the list of all possible rational zeros of [tex]\( f(x) = -3x^4 - 9x^3 - 6x^2 - 8x + 14 \)[/tex] is:
[tex]\[ \pm 1, \pm 2, \pm 7, \pm 14, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{7}{3}, \pm \frac{14}{3} \][/tex]
So, the correct answer is:
[tex]\[ \pm 1, \pm 2, \pm 7, \pm 14, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{7}{3}, \pm \frac{14}{3} \][/tex]
This matches the third provided option in the question.
1. Identify the factors of the constant term (14):
The factors are: [tex]\( \pm 1, \pm 2, \pm 7, \pm 14 \)[/tex]
2. Identify the factors of the leading coefficient (-3):
The factors are: [tex]\( \pm 1, \pm 3 \)[/tex]
3. Form all possible rational numbers [tex]\( \frac{p}{q} \)[/tex] using these factors:
The possible rational numbers are obtained by dividing each factor of the constant term by each factor of the leading coefficient. This gives us:
- [tex]\( \frac{1}{1}, \frac{2}{1}, \frac{7}{1}, \frac{14}{1} \)[/tex]
- [tex]\( \frac{1}{3}, \frac{2}{3}, \frac{7}{3}, \frac{14}{3} \)[/tex]
- And their negatives [tex]\( -1, -2, -7, -14, -\frac{1}{3}, -\frac{2}{3}, -\frac{7}{3}, -\frac{14}{3} \)[/tex]
4. Combine and sort these possible zeros:
Arranging all these possibilities, we get:
[tex]\[ \pm 1, \pm 2, \pm 7, \pm 14, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{7}{3}, \pm \frac{14}{3} \][/tex]
Thus, the list of all possible rational zeros of [tex]\( f(x) = -3x^4 - 9x^3 - 6x^2 - 8x + 14 \)[/tex] is:
[tex]\[ \pm 1, \pm 2, \pm 7, \pm 14, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{7}{3}, \pm \frac{14}{3} \][/tex]
So, the correct answer is:
[tex]\[ \pm 1, \pm 2, \pm 7, \pm 14, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{7}{3}, \pm \frac{14}{3} \][/tex]
This matches the third provided option in the question.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.