Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

2. If the value of [tex]a[/tex] in the quadratic function [tex]f(x)=ax^2+bx+c[/tex] is -8, the function will

A. open up and have a maximum
B. open down and have a minimum
C. open up and have a minimum
D. open down and have a maximum


Sagot :

Given the quadratic function [tex]\( f(x) = ax^2 + bx + c \)[/tex], let's analyze the behavior of the function based on the value of [tex]\( a \)[/tex].

We know that the quadratic function [tex]\( f(x) = ax^2 + bx + c \)[/tex] can open either upwards or downwards depending on the value of the coefficient [tex]\( a \)[/tex]:

1. If [tex]\( a > 0 \)[/tex], the parabola opens upwards and has a minimum value.
2. If [tex]\( a < 0 \)[/tex], the parabola opens downwards and has a maximum value.

In this problem, it is given that [tex]\( a = -8 \)[/tex]. Since [tex]\( a = -8 \)[/tex] is less than zero ([tex]\( a < 0 \)[/tex]), we can conclude the following about the quadratic function:

- The parabola opens downwards.
- Since it opens downwards, the function will have a maximum value.

Therefore, the correct answer is:

open down and have a maximum.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.