Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Given the quadratic function [tex]\( f(x) = ax^2 + bx + c \)[/tex], let's analyze the behavior of the function based on the value of [tex]\( a \)[/tex].
We know that the quadratic function [tex]\( f(x) = ax^2 + bx + c \)[/tex] can open either upwards or downwards depending on the value of the coefficient [tex]\( a \)[/tex]:
1. If [tex]\( a > 0 \)[/tex], the parabola opens upwards and has a minimum value.
2. If [tex]\( a < 0 \)[/tex], the parabola opens downwards and has a maximum value.
In this problem, it is given that [tex]\( a = -8 \)[/tex]. Since [tex]\( a = -8 \)[/tex] is less than zero ([tex]\( a < 0 \)[/tex]), we can conclude the following about the quadratic function:
- The parabola opens downwards.
- Since it opens downwards, the function will have a maximum value.
Therefore, the correct answer is:
open down and have a maximum.
We know that the quadratic function [tex]\( f(x) = ax^2 + bx + c \)[/tex] can open either upwards or downwards depending on the value of the coefficient [tex]\( a \)[/tex]:
1. If [tex]\( a > 0 \)[/tex], the parabola opens upwards and has a minimum value.
2. If [tex]\( a < 0 \)[/tex], the parabola opens downwards and has a maximum value.
In this problem, it is given that [tex]\( a = -8 \)[/tex]. Since [tex]\( a = -8 \)[/tex] is less than zero ([tex]\( a < 0 \)[/tex]), we can conclude the following about the quadratic function:
- The parabola opens downwards.
- Since it opens downwards, the function will have a maximum value.
Therefore, the correct answer is:
open down and have a maximum.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.