Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine how many moles of oxygen atoms are present in [tex]\(2.4 \times 10^{24}\)[/tex] molecules of [tex]\(SO_3\)[/tex], follow these steps:
### Step 1: Find the number of moles of [tex]\(SO_3\)[/tex]
First, we need to know the number of molecules in one mole of a substance. This is given by Avogadro's number, [tex]\(6.022 \times 10^{23}\)[/tex] molecules per mole.
To find the number of moles of [tex]\(SO_3\)[/tex], we use the formula:
[tex]\[ \text{moles of } SO_3 = \frac{\text{number of molecules of } SO_3}{\text{Avogadro's number}} \][/tex]
Given:
[tex]\[ \text{number of molecules of } SO_3 = 2.4 \times 10^{24} \][/tex]
[tex]\[ \text{Avogadro's number} = 6.022 \times 10^{23} \][/tex]
Substitute these values into the formula:
[tex]\[ \text{moles of } SO_3 = \frac{2.4 \times 10^{24}}{6.022 \times 10^{23}} \][/tex]
From this calculation, we find:
[tex]\[ \text{moles of } SO_3 \approx 3.985 \][/tex]
### Step 2: Determine moles of oxygen atoms in [tex]\(SO_3\)[/tex]
Each molecule of [tex]\(SO_3\)[/tex] contains 3 atoms of oxygen.
To find the number of moles of oxygen atoms, we multiply the moles of [tex]\(SO_3\)[/tex] by the number of oxygen atoms per molecule of [tex]\(SO_3\)[/tex]:
[tex]\[ \text{moles of oxygen atoms} = \text{moles of } SO_3 \times 3 \][/tex]
So,
[tex]\[ \text{moles of oxygen atoms} = 3.985 \times 3 \][/tex]
From this calculation, we find:
[tex]\[ \text{moles of oxygen atoms} \approx 11.956 \][/tex]
### Conclusion
Therefore, in [tex]\(2.4 \times 10^{24}\)[/tex] molecules of [tex]\(SO_3\)[/tex], there are approximately [tex]\(3.985\)[/tex] moles of [tex]\(SO_3\)[/tex] and [tex]\(11.956\)[/tex] moles of oxygen atoms.
### Step 1: Find the number of moles of [tex]\(SO_3\)[/tex]
First, we need to know the number of molecules in one mole of a substance. This is given by Avogadro's number, [tex]\(6.022 \times 10^{23}\)[/tex] molecules per mole.
To find the number of moles of [tex]\(SO_3\)[/tex], we use the formula:
[tex]\[ \text{moles of } SO_3 = \frac{\text{number of molecules of } SO_3}{\text{Avogadro's number}} \][/tex]
Given:
[tex]\[ \text{number of molecules of } SO_3 = 2.4 \times 10^{24} \][/tex]
[tex]\[ \text{Avogadro's number} = 6.022 \times 10^{23} \][/tex]
Substitute these values into the formula:
[tex]\[ \text{moles of } SO_3 = \frac{2.4 \times 10^{24}}{6.022 \times 10^{23}} \][/tex]
From this calculation, we find:
[tex]\[ \text{moles of } SO_3 \approx 3.985 \][/tex]
### Step 2: Determine moles of oxygen atoms in [tex]\(SO_3\)[/tex]
Each molecule of [tex]\(SO_3\)[/tex] contains 3 atoms of oxygen.
To find the number of moles of oxygen atoms, we multiply the moles of [tex]\(SO_3\)[/tex] by the number of oxygen atoms per molecule of [tex]\(SO_3\)[/tex]:
[tex]\[ \text{moles of oxygen atoms} = \text{moles of } SO_3 \times 3 \][/tex]
So,
[tex]\[ \text{moles of oxygen atoms} = 3.985 \times 3 \][/tex]
From this calculation, we find:
[tex]\[ \text{moles of oxygen atoms} \approx 11.956 \][/tex]
### Conclusion
Therefore, in [tex]\(2.4 \times 10^{24}\)[/tex] molecules of [tex]\(SO_3\)[/tex], there are approximately [tex]\(3.985\)[/tex] moles of [tex]\(SO_3\)[/tex] and [tex]\(11.956\)[/tex] moles of oxygen atoms.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.