Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve for [tex]\( q \)[/tex] using the Hardy-Weinberg equation, we'll follow a step-by-step approach:
1. Understand the given data and Hardy-Weinberg principle:
- The Hardy-Weinberg equation is [tex]\( p^2 + 2pq + q^2 = 1 \)[/tex], where:
- [tex]\( p \)[/tex] is the frequency of the dominant allele (purple).
- [tex]\( q \)[/tex] is the frequency of the recessive allele (red).
- [tex]\( p^2 \)[/tex] is the frequency of the homozygous dominant genotype.
- [tex]\( 2pq \)[/tex] is the frequency of the heterozygous genotype.
- [tex]\( q^2 \)[/tex] is the frequency of the homozygous recessive genotype.
2. Analyze the given data:
- We are given that 30 out of 100 organisms are red. Since red organisms are homozygous recessive, this corresponds to [tex]\( q^2 \)[/tex].
- Total number of organisms = 100.
- Number of red organisms = 30.
3. Calculate [tex]\( q^2 \)[/tex]:
[tex]\[ q^2 = \frac{\text{Number of red organisms}}{\text{Total number of organisms}} = \frac{30}{100} = 0.3 \][/tex]
4. Calculate [tex]\( q \)[/tex] by taking the square root of [tex]\( q^2 \)[/tex]:
[tex]\[ q = \sqrt{q^2} = \sqrt{0.3} \approx 0.5477225575051661 \][/tex]
5. Verify the value of [tex]\( q \)[/tex] against the provided options:
- A: [tex]\( 0.70 \)[/tex]
- B: [tex]\( 0.49 \)[/tex]
- C: [tex]\( 0.55 \)[/tex]
- D: [tex]\( 0.30 \)[/tex]
Given the calculated value of [tex]\( q \approx 0.5477225575051661 \)[/tex], the closest option is [tex]\( 0.55 \)[/tex], which corresponds to option C.
6. Conclusion:
The value of [tex]\( q \)[/tex] is approximately [tex]\( 0.55 \)[/tex].
Therefore, the correct answer is:
C. 0.55
1. Understand the given data and Hardy-Weinberg principle:
- The Hardy-Weinberg equation is [tex]\( p^2 + 2pq + q^2 = 1 \)[/tex], where:
- [tex]\( p \)[/tex] is the frequency of the dominant allele (purple).
- [tex]\( q \)[/tex] is the frequency of the recessive allele (red).
- [tex]\( p^2 \)[/tex] is the frequency of the homozygous dominant genotype.
- [tex]\( 2pq \)[/tex] is the frequency of the heterozygous genotype.
- [tex]\( q^2 \)[/tex] is the frequency of the homozygous recessive genotype.
2. Analyze the given data:
- We are given that 30 out of 100 organisms are red. Since red organisms are homozygous recessive, this corresponds to [tex]\( q^2 \)[/tex].
- Total number of organisms = 100.
- Number of red organisms = 30.
3. Calculate [tex]\( q^2 \)[/tex]:
[tex]\[ q^2 = \frac{\text{Number of red organisms}}{\text{Total number of organisms}} = \frac{30}{100} = 0.3 \][/tex]
4. Calculate [tex]\( q \)[/tex] by taking the square root of [tex]\( q^2 \)[/tex]:
[tex]\[ q = \sqrt{q^2} = \sqrt{0.3} \approx 0.5477225575051661 \][/tex]
5. Verify the value of [tex]\( q \)[/tex] against the provided options:
- A: [tex]\( 0.70 \)[/tex]
- B: [tex]\( 0.49 \)[/tex]
- C: [tex]\( 0.55 \)[/tex]
- D: [tex]\( 0.30 \)[/tex]
Given the calculated value of [tex]\( q \approx 0.5477225575051661 \)[/tex], the closest option is [tex]\( 0.55 \)[/tex], which corresponds to option C.
6. Conclusion:
The value of [tex]\( q \)[/tex] is approximately [tex]\( 0.55 \)[/tex].
Therefore, the correct answer is:
C. 0.55
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.