Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

A trait has two alleles, represented by [tex][tex]$p$[/tex][/tex] and [tex][tex]$q$[/tex][/tex]. If [tex][tex]$p = 0.35$[/tex][/tex], what is [tex][tex]$q$[/tex][/tex]?

A. 0.65
B. 0.50
C. 0.42
D. 0.35


Sagot :

To solve for [tex]\( q \)[/tex] when given [tex]\( p \)[/tex] in a situation where there are two alleles represented by [tex]\( p \)[/tex] and [tex]\( q \)[/tex], you can use the fundamental principle that the total probability for the two alleles must add up to 1. This can be expressed mathematically by the equation:
[tex]\[ p + q = 1 \][/tex]

Given the value of [tex]\( p \)[/tex]:
[tex]\[ p = 0.35 \][/tex]

We can substitute the value of [tex]\( p \)[/tex] into the equation to solve for [tex]\( q \)[/tex]:

[tex]\[ 0.35 + q = 1 \][/tex]

Next, solve for [tex]\( q \)[/tex] by isolating [tex]\( q \)[/tex]:

[tex]\[ q = 1 - 0.35 \][/tex]

Simplifying the right-hand side of the equation gives:
[tex]\[ q = 0.65 \][/tex]

Therefore, the value of [tex]\( q \)[/tex] is [tex]\( 0.65 \)[/tex], which corresponds to:

Answer: A. 0.65