Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the value of [tex]\( p \)[/tex] given that 33 out of 100 organisms have short legs, we will follow these steps based on the Hardy-Weinberg equilibrium.
1. Understanding Hardy-Weinberg Equilibrium:
The Hardy-Weinberg equation is [tex]\( p^2 + 2pq + q^2 = 1 \)[/tex]. Here:
- [tex]\( p \)[/tex] represents the frequency of the dominant allele (legs).
- [tex]\( q \)[/tex] represents the frequency of the recessive allele (short legs).
- [tex]\( p^2 \)[/tex] is the proportion of the population that is homozygous dominant (having two dominant alleles).
- [tex]\( 2pq \)[/tex] is the proportion of the population that is heterozygous (having one dominant and one recessive allele).
- [tex]\( q^2 \)[/tex] is the proportion of the population that is homozygous recessive (having two recessive alleles).
2. Identifying the Given Information:
- Total number of organisms, [tex]\( N \)[/tex], is 100.
- Number of organisms with short legs, which corresponds to the homozygous recessive group ([tex]\( q^2 \)[/tex]), is 33.
3. Calculate [tex]\( q^2 \)[/tex]:
[tex]\[ q^2 = \frac{\text{Number of homozygous recessive organisms}}{\text{Total number of organisms}} = \frac{33}{100} = 0.33 \][/tex]
4. Determine [tex]\( q \)[/tex] by taking the square root of [tex]\( q^2 \)[/tex]:
[tex]\[ q = \sqrt{0.33} \approx 0.574 \][/tex]
5. Use the relationship [tex]\( p + q = 1 \)[/tex] to find [tex]\( p \)[/tex]:
[tex]\[ p = 1 - q = 1 - 0.574 \approx 0.426 \][/tex]
6. Final Value of [tex]\( p \)[/tex]:
[tex]\[ p \approx 0.426 \][/tex]
Therefore, the closest option to the calculated value of [tex]\( p \)[/tex] is option C:
[tex]\[ \boxed{0.43} \][/tex]
1. Understanding Hardy-Weinberg Equilibrium:
The Hardy-Weinberg equation is [tex]\( p^2 + 2pq + q^2 = 1 \)[/tex]. Here:
- [tex]\( p \)[/tex] represents the frequency of the dominant allele (legs).
- [tex]\( q \)[/tex] represents the frequency of the recessive allele (short legs).
- [tex]\( p^2 \)[/tex] is the proportion of the population that is homozygous dominant (having two dominant alleles).
- [tex]\( 2pq \)[/tex] is the proportion of the population that is heterozygous (having one dominant and one recessive allele).
- [tex]\( q^2 \)[/tex] is the proportion of the population that is homozygous recessive (having two recessive alleles).
2. Identifying the Given Information:
- Total number of organisms, [tex]\( N \)[/tex], is 100.
- Number of organisms with short legs, which corresponds to the homozygous recessive group ([tex]\( q^2 \)[/tex]), is 33.
3. Calculate [tex]\( q^2 \)[/tex]:
[tex]\[ q^2 = \frac{\text{Number of homozygous recessive organisms}}{\text{Total number of organisms}} = \frac{33}{100} = 0.33 \][/tex]
4. Determine [tex]\( q \)[/tex] by taking the square root of [tex]\( q^2 \)[/tex]:
[tex]\[ q = \sqrt{0.33} \approx 0.574 \][/tex]
5. Use the relationship [tex]\( p + q = 1 \)[/tex] to find [tex]\( p \)[/tex]:
[tex]\[ p = 1 - q = 1 - 0.574 \approx 0.426 \][/tex]
6. Final Value of [tex]\( p \)[/tex]:
[tex]\[ p \approx 0.426 \][/tex]
Therefore, the closest option to the calculated value of [tex]\( p \)[/tex] is option C:
[tex]\[ \boxed{0.43} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.