Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Find the inverse of the function.

[tex] y = \log_5(2x) [/tex]

The inverse is [tex] y = \square [/tex] (Simplify your answer.)


Sagot :

To find the inverse of the function [tex]\( y = \log_5(2x) \)[/tex], follow these detailed steps:

1. Start with the given function:
[tex]\[ y = \log_5(2x) \][/tex]

2. Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to find the inverse:
[tex]\[ x = \log_5(2y) \][/tex]

3. Rewrite the equation in its exponential form to solve for [tex]\( y \)[/tex]:
Recall that if [tex]\( a = \log_b(c) \)[/tex], then [tex]\( b^a = c \)[/tex]. Using this property, convert the logarithmic equation into an exponential equation:
[tex]\[ 5^x = 2y \][/tex]

4. Solve for [tex]\( y \)[/tex]:
To isolate [tex]\( y \)[/tex], divide both sides of the equation by 2:
[tex]\[ y = \frac{5^x}{2} \][/tex]

Thus, the inverse of the function [tex]\( y = \log_5(2x) \)[/tex] is:
[tex]\[ y = \frac{5^x}{2} \][/tex]