Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the inverse of the function [tex]\( y = \log_5(2x) \)[/tex], follow these detailed steps:
1. Start with the given function:
[tex]\[ y = \log_5(2x) \][/tex]
2. Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to find the inverse:
[tex]\[ x = \log_5(2y) \][/tex]
3. Rewrite the equation in its exponential form to solve for [tex]\( y \)[/tex]:
Recall that if [tex]\( a = \log_b(c) \)[/tex], then [tex]\( b^a = c \)[/tex]. Using this property, convert the logarithmic equation into an exponential equation:
[tex]\[ 5^x = 2y \][/tex]
4. Solve for [tex]\( y \)[/tex]:
To isolate [tex]\( y \)[/tex], divide both sides of the equation by 2:
[tex]\[ y = \frac{5^x}{2} \][/tex]
Thus, the inverse of the function [tex]\( y = \log_5(2x) \)[/tex] is:
[tex]\[ y = \frac{5^x}{2} \][/tex]
1. Start with the given function:
[tex]\[ y = \log_5(2x) \][/tex]
2. Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to find the inverse:
[tex]\[ x = \log_5(2y) \][/tex]
3. Rewrite the equation in its exponential form to solve for [tex]\( y \)[/tex]:
Recall that if [tex]\( a = \log_b(c) \)[/tex], then [tex]\( b^a = c \)[/tex]. Using this property, convert the logarithmic equation into an exponential equation:
[tex]\[ 5^x = 2y \][/tex]
4. Solve for [tex]\( y \)[/tex]:
To isolate [tex]\( y \)[/tex], divide both sides of the equation by 2:
[tex]\[ y = \frac{5^x}{2} \][/tex]
Thus, the inverse of the function [tex]\( y = \log_5(2x) \)[/tex] is:
[tex]\[ y = \frac{5^x}{2} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.