Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Find the equation of the inverse of [tex]f(x)=\left(\frac{1}{6}\right)^{x-3}[/tex].

[tex]\ \textless \ br/\ \textgreater \ f^{-1}(x)=\ \textless \ br/\ \textgreater \ [/tex]


Sagot :

To find the equation of the inverse of the function [tex]\( f(x) = \left(\frac{1}{6}\right)^{x-3} \)[/tex], we need to follow a series of steps meticulously:

### Step 1: Express [tex]\( f(x) \)[/tex] as [tex]\( y \)[/tex]
Let's start by writing the function in terms of [tex]\( y \)[/tex]:
[tex]\[ y = \left(\frac{1}{6}\right)^{x-3} \][/tex]

### Step 2: Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
To find the inverse function, we swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ x = \left(\frac{1}{6}\right)^{y-3} \][/tex]

### Step 3: Solve for [tex]\( y \)[/tex]
Now, we need to solve this equation for [tex]\( y \)[/tex].

#### Step 3a: Take natural logarithms of both sides
Taking the natural logarithm on both sides:
[tex]\[ \ln(x) = \ln \left(\left(\frac{1}{6}\right)^{y-3}\right) \][/tex]

#### Step 3b: Use the logarithmic power rule
Using the power rule for logarithms [tex]\( \ln(a^b) = b \cdot \ln(a) \)[/tex], we get:
[tex]\[ \ln(x) = (y - 3) \cdot \ln\left(\frac{1}{6}\right) \][/tex]

#### Step 3c: Isolate [tex]\( y \)[/tex]
Next, solve for [tex]\( y \)[/tex]:
[tex]\[ y - 3 = \frac{\ln(x)}{\ln\left(\frac{1}{6}\right)} \][/tex]

Adding 3 to both sides:
[tex]\[ y = \frac{\ln(x)}{\ln\left(\frac{1}{6}\right)} + 3 \][/tex]

### Conclusion
Thus, the inverse function is:
[tex]\[ f^{-1}(x) = \frac{\ln(x)}{\ln\left(\frac{1}{6}\right)} + 3 \][/tex]

So, the equation of the inverse function [tex]\( f^{-1}(x) \)[/tex] is:
[tex]\[ f^{-1}(x) = \frac{\ln(x)}{\ln\left(\frac{1}{6}\right)} + 3 \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.