Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the domain and range of the inequality [tex]\( y < \sqrt{x + 3} + 1 \)[/tex], let's analyze it step by step:
1. Domain:
- The expression inside the square root, [tex]\( x + 3 \)[/tex], must be non-negative because the square root function is only defined for non-negative numbers.
- So, we set up the inequality:
[tex]\[ x + 3 \geq 0 \][/tex]
- Solving for [tex]\( x \)[/tex]:
[tex]\[ x \geq -3 \][/tex]
- Since we are only considering [tex]\( y \)[/tex] values that actually satisfy [tex]\( y < \sqrt{x + 3} + 1 \)[/tex], [tex]\( x \)[/tex] must be strictly greater than [tex]\(-3\)[/tex].
- Therefore, the domain is:
[tex]\[ x > -3 \][/tex]
2. Range:
- Consider the smallest value [tex]\( y \)[/tex] can take. This happens when [tex]\( x \)[/tex] is at its lowest permissible value from the domain, which is as [tex]\( x \)[/tex] approaches [tex]\(-3\)[/tex].
- When [tex]\( x = -3 \)[/tex]:
[tex]\[ y = \sqrt{x + 3} + 1 = \sqrt{-3 + 3} + 1 = \sqrt{0} + 1 = 1 \][/tex]
- However, the inequality specifies [tex]\( y \)[/tex] must be less than [tex]\( \sqrt{x + 3} + 1 \)[/tex], so [tex]\( y \)[/tex] can never actually be 1.
- Therefore, [tex]\( y \)[/tex] must be greater than 1 to satisfy the inequality.
- Hence, the range is:
[tex]\[ y > 1 \][/tex]
Combining both parts, we get:
- The domain is [tex]\( x > -3 \)[/tex]
- The range is [tex]\( y > 1 \)[/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\text{A. } x > -3 \text{ and } y > 1 } \][/tex]
1. Domain:
- The expression inside the square root, [tex]\( x + 3 \)[/tex], must be non-negative because the square root function is only defined for non-negative numbers.
- So, we set up the inequality:
[tex]\[ x + 3 \geq 0 \][/tex]
- Solving for [tex]\( x \)[/tex]:
[tex]\[ x \geq -3 \][/tex]
- Since we are only considering [tex]\( y \)[/tex] values that actually satisfy [tex]\( y < \sqrt{x + 3} + 1 \)[/tex], [tex]\( x \)[/tex] must be strictly greater than [tex]\(-3\)[/tex].
- Therefore, the domain is:
[tex]\[ x > -3 \][/tex]
2. Range:
- Consider the smallest value [tex]\( y \)[/tex] can take. This happens when [tex]\( x \)[/tex] is at its lowest permissible value from the domain, which is as [tex]\( x \)[/tex] approaches [tex]\(-3\)[/tex].
- When [tex]\( x = -3 \)[/tex]:
[tex]\[ y = \sqrt{x + 3} + 1 = \sqrt{-3 + 3} + 1 = \sqrt{0} + 1 = 1 \][/tex]
- However, the inequality specifies [tex]\( y \)[/tex] must be less than [tex]\( \sqrt{x + 3} + 1 \)[/tex], so [tex]\( y \)[/tex] can never actually be 1.
- Therefore, [tex]\( y \)[/tex] must be greater than 1 to satisfy the inequality.
- Hence, the range is:
[tex]\[ y > 1 \][/tex]
Combining both parts, we get:
- The domain is [tex]\( x > -3 \)[/tex]
- The range is [tex]\( y > 1 \)[/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\text{A. } x > -3 \text{ and } y > 1 } \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.