At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the problem of vertically shifting the square root parent function [tex]\( F(x) = \sqrt{x} \)[/tex] up nine units, we need to understand the effect of vertical shifts on a function.
A vertical shift involves adding or subtracting a constant value to the entire function. In this case, we want to shift [tex]\( \sqrt{x} \)[/tex] upwards by 9 units.
Let's break down the steps:
1. Understand the Vertical Shift: When we shift a function [tex]\( f(x) \)[/tex] vertically by [tex]\( k \)[/tex] units, the new function [tex]\( g(x) \)[/tex] is given by:
[tex]\[ g(x) = f(x) + k \][/tex]
If moving upwards, [tex]\( k \)[/tex] will be positive; if moving downwards, [tex]\( k \)[/tex] will be negative.
2. Apply the Shift to the Given Function:
- The original function is [tex]\( F(x) = \sqrt{x} \)[/tex].
- We want to shift this function up by 9 units, so [tex]\( k = 9 \)[/tex].
3. Form the New Function: Adding 9 to the original function gives us:
[tex]\[ G(x) = \sqrt{x} + 9 \][/tex]
So, the equation of the new function after shifting the square root function up by nine units is:
[tex]\[ G(x) = \sqrt{x} + 9 \][/tex]
Therefore, the correct answer is [tex]\( \boxed{D} \)[/tex].
A vertical shift involves adding or subtracting a constant value to the entire function. In this case, we want to shift [tex]\( \sqrt{x} \)[/tex] upwards by 9 units.
Let's break down the steps:
1. Understand the Vertical Shift: When we shift a function [tex]\( f(x) \)[/tex] vertically by [tex]\( k \)[/tex] units, the new function [tex]\( g(x) \)[/tex] is given by:
[tex]\[ g(x) = f(x) + k \][/tex]
If moving upwards, [tex]\( k \)[/tex] will be positive; if moving downwards, [tex]\( k \)[/tex] will be negative.
2. Apply the Shift to the Given Function:
- The original function is [tex]\( F(x) = \sqrt{x} \)[/tex].
- We want to shift this function up by 9 units, so [tex]\( k = 9 \)[/tex].
3. Form the New Function: Adding 9 to the original function gives us:
[tex]\[ G(x) = \sqrt{x} + 9 \][/tex]
So, the equation of the new function after shifting the square root function up by nine units is:
[tex]\[ G(x) = \sqrt{x} + 9 \][/tex]
Therefore, the correct answer is [tex]\( \boxed{D} \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.