Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which graph represents the inequality [tex]\( y > \sqrt{4x} + 2 \)[/tex], let's carefully examine the inequality step by step.
1. Understanding the inequality [tex]\( y > \sqrt{4x} + 2 \)[/tex]:
- The expression [tex]\( \sqrt{4x} \)[/tex] is the square root function, multiplied by 2 inside.
- Adding 2 to [tex]\( \sqrt{4x} \)[/tex] shifts the graph of [tex]\( \sqrt{4x} \)[/tex] upward by 2 units.
2. Graphing the equality [tex]\( y = \sqrt{4x} + 2 \)[/tex]:
- This equation represents a curve that starts from [tex]\((0, 2)\)[/tex] because when [tex]\( x = 0 \)[/tex], [tex]\( y = \sqrt{4 \cdot 0} + 2 = 2 \)[/tex].
- As [tex]\( x \)[/tex] increases, [tex]\( y \)[/tex] increases due to the [tex]\( \sqrt{4x} \)[/tex] term.
- The curve gets steeper as [tex]\( x \)[/tex] increases, resembling the right half of a parabola that is stretched and shifted upward.
3. Interpreting the inequality [tex]\( y > \sqrt{4x} + 2 \)[/tex]:
- This inequality implies that the region of interest is above the curve [tex]\( y = \sqrt{4x} + 2 \)[/tex].
- Any point in the graph that lies above this curve satisfies the inequality.
To determine which graph is correct, we need to identify a graph that:
- Contains the curve [tex]\( y = \sqrt{4x} + 2 \)[/tex].
- Has the region above this curve shaded, indicating the region where [tex]\( y \)[/tex] values are greater than [tex]\( \sqrt{4x} + 2 \)[/tex].
Given this understanding, the correct graph showing the region that satisfies the inequality [tex]\( y > \sqrt{4x} + 2 \)[/tex] is:
- Option A: Graph B
- Option B: Graph C
- Option C: Graph A
- Option D: Graph D
By analyzing the various attributes and matching them against the described characteristics, the correct option is:
[tex]\[ \boxed{C} \][/tex]
1. Understanding the inequality [tex]\( y > \sqrt{4x} + 2 \)[/tex]:
- The expression [tex]\( \sqrt{4x} \)[/tex] is the square root function, multiplied by 2 inside.
- Adding 2 to [tex]\( \sqrt{4x} \)[/tex] shifts the graph of [tex]\( \sqrt{4x} \)[/tex] upward by 2 units.
2. Graphing the equality [tex]\( y = \sqrt{4x} + 2 \)[/tex]:
- This equation represents a curve that starts from [tex]\((0, 2)\)[/tex] because when [tex]\( x = 0 \)[/tex], [tex]\( y = \sqrt{4 \cdot 0} + 2 = 2 \)[/tex].
- As [tex]\( x \)[/tex] increases, [tex]\( y \)[/tex] increases due to the [tex]\( \sqrt{4x} \)[/tex] term.
- The curve gets steeper as [tex]\( x \)[/tex] increases, resembling the right half of a parabola that is stretched and shifted upward.
3. Interpreting the inequality [tex]\( y > \sqrt{4x} + 2 \)[/tex]:
- This inequality implies that the region of interest is above the curve [tex]\( y = \sqrt{4x} + 2 \)[/tex].
- Any point in the graph that lies above this curve satisfies the inequality.
To determine which graph is correct, we need to identify a graph that:
- Contains the curve [tex]\( y = \sqrt{4x} + 2 \)[/tex].
- Has the region above this curve shaded, indicating the region where [tex]\( y \)[/tex] values are greater than [tex]\( \sqrt{4x} + 2 \)[/tex].
Given this understanding, the correct graph showing the region that satisfies the inequality [tex]\( y > \sqrt{4x} + 2 \)[/tex] is:
- Option A: Graph B
- Option B: Graph C
- Option C: Graph A
- Option D: Graph D
By analyzing the various attributes and matching them against the described characteristics, the correct option is:
[tex]\[ \boxed{C} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.