Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Which is the correct graph for the inequality [tex]y \ \textgreater \ \sqrt{4x} + 2[/tex]?

A. Graph B
B. Graph C
C. Graph A
D. Graph D

Sagot :

To determine which graph represents the inequality [tex]\( y > \sqrt{4x} + 2 \)[/tex], let's carefully examine the inequality step by step.

1. Understanding the inequality [tex]\( y > \sqrt{4x} + 2 \)[/tex]:
- The expression [tex]\( \sqrt{4x} \)[/tex] is the square root function, multiplied by 2 inside.
- Adding 2 to [tex]\( \sqrt{4x} \)[/tex] shifts the graph of [tex]\( \sqrt{4x} \)[/tex] upward by 2 units.

2. Graphing the equality [tex]\( y = \sqrt{4x} + 2 \)[/tex]:
- This equation represents a curve that starts from [tex]\((0, 2)\)[/tex] because when [tex]\( x = 0 \)[/tex], [tex]\( y = \sqrt{4 \cdot 0} + 2 = 2 \)[/tex].
- As [tex]\( x \)[/tex] increases, [tex]\( y \)[/tex] increases due to the [tex]\( \sqrt{4x} \)[/tex] term.
- The curve gets steeper as [tex]\( x \)[/tex] increases, resembling the right half of a parabola that is stretched and shifted upward.

3. Interpreting the inequality [tex]\( y > \sqrt{4x} + 2 \)[/tex]:
- This inequality implies that the region of interest is above the curve [tex]\( y = \sqrt{4x} + 2 \)[/tex].
- Any point in the graph that lies above this curve satisfies the inequality.

To determine which graph is correct, we need to identify a graph that:
- Contains the curve [tex]\( y = \sqrt{4x} + 2 \)[/tex].
- Has the region above this curve shaded, indicating the region where [tex]\( y \)[/tex] values are greater than [tex]\( \sqrt{4x} + 2 \)[/tex].

Given this understanding, the correct graph showing the region that satisfies the inequality [tex]\( y > \sqrt{4x} + 2 \)[/tex] is:

- Option A: Graph B
- Option B: Graph C
- Option C: Graph A
- Option D: Graph D

By analyzing the various attributes and matching them against the described characteristics, the correct option is:

[tex]\[ \boxed{C} \][/tex]