Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure, let's break down the process step-by-step to determine the daily frequency of bear sightings for each given percentage.
1. Understanding the Problem:
- There are 28 days in total.
- We are given percentages that indicate how often bears were sighted over those 28 days.
2. Interpreting Percentages:
- These percentages represent the portion of the total days (28 days) during which bears were sighted.
3. Calculating the Actual Days for Each Percentage:
- For Option A: 143%
- If bears were sighted 143% of the days, this means sightings happened 143% of 28 days.
- Actual days of sightings for 143% = [tex]\( \frac{143}{100} \times 28 \)[/tex] days.
- For Option B: 70%
- If bears were sighted 70% of the days, this means sightings happened 70% of 28 days.
- Actual days of sightings for 70% = [tex]\( \frac{70}{100} \times 28 \)[/tex] days.
- For Option C: 40%
- If bears were sighted 40% of the days, this means sightings happened 40% of 28 days.
- Actual days of sightings for 40% = [tex]\( \frac{40}{100} \times 28 \)[/tex] days.
- For Option D: 28%
- If bears were sighted 28% of the days, this means sightings happened 28% of 28 days.
- Actual days of sightings for 28% = [tex]\( \frac{28}{100} \times 28 \)[/tex] days.
4. Results:
- Option A (143%):
- [tex]\( \frac{143}{100} \times 28 = 40.04 \)[/tex] days
- So, there were sightings on approximately 40.04 days.
- Option B (70%):
- [tex]\( \frac{70}{100} \times 28 = 19.6 \)[/tex] days
- So, there were sightings on approximately 19.6 days.
- Option C (40%):
- [tex]\( \frac{40}{100} \times 28 = 11.2 \)[/tex] days
- So, there were sightings on approximately 11.2 days.
- Option D (28%):
- [tex]\( \frac{28}{100} \times 28 = 7.84 \)[/tex] days
- So, there were sightings on approximately 7.84 days.
In conclusion, we have calculated the actual days for each percentage:
- Option A (143%) = 40.04 days,
- Option B (70%) = 19.6 days,
- Option C (40%) = 11.2 days,
- Option D (28%) = 7.84 days.
1. Understanding the Problem:
- There are 28 days in total.
- We are given percentages that indicate how often bears were sighted over those 28 days.
2. Interpreting Percentages:
- These percentages represent the portion of the total days (28 days) during which bears were sighted.
3. Calculating the Actual Days for Each Percentage:
- For Option A: 143%
- If bears were sighted 143% of the days, this means sightings happened 143% of 28 days.
- Actual days of sightings for 143% = [tex]\( \frac{143}{100} \times 28 \)[/tex] days.
- For Option B: 70%
- If bears were sighted 70% of the days, this means sightings happened 70% of 28 days.
- Actual days of sightings for 70% = [tex]\( \frac{70}{100} \times 28 \)[/tex] days.
- For Option C: 40%
- If bears were sighted 40% of the days, this means sightings happened 40% of 28 days.
- Actual days of sightings for 40% = [tex]\( \frac{40}{100} \times 28 \)[/tex] days.
- For Option D: 28%
- If bears were sighted 28% of the days, this means sightings happened 28% of 28 days.
- Actual days of sightings for 28% = [tex]\( \frac{28}{100} \times 28 \)[/tex] days.
4. Results:
- Option A (143%):
- [tex]\( \frac{143}{100} \times 28 = 40.04 \)[/tex] days
- So, there were sightings on approximately 40.04 days.
- Option B (70%):
- [tex]\( \frac{70}{100} \times 28 = 19.6 \)[/tex] days
- So, there were sightings on approximately 19.6 days.
- Option C (40%):
- [tex]\( \frac{40}{100} \times 28 = 11.2 \)[/tex] days
- So, there were sightings on approximately 11.2 days.
- Option D (28%):
- [tex]\( \frac{28}{100} \times 28 = 7.84 \)[/tex] days
- So, there were sightings on approximately 7.84 days.
In conclusion, we have calculated the actual days for each percentage:
- Option A (143%) = 40.04 days,
- Option B (70%) = 19.6 days,
- Option C (40%) = 11.2 days,
- Option D (28%) = 7.84 days.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.