Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the exponential equation [tex]\( e^x = 15.29 \)[/tex] and find its equivalent logarithmic form, follow these steps:
1. Recognize that [tex]\( e^x \)[/tex] is an exponential function, where the base is [tex]\( e \)[/tex], the natural logarithm base. The inverse operation of exponentiation with base [tex]\( e \)[/tex] is taking the natural logarithm (ln).
2. Apply the natural logarithm to both sides of the equation to isolate the variable [tex]\( x \)[/tex]. This uses the property of logarithms that states [tex]\( \ln(e^x) = x \)[/tex] because the natural logarithm and the exponential function are inverses.
[tex]\[ \begin{align*} \ln(e^x) &= \ln(15.29) \end{align*} \][/tex]
3. Use the logarithmic identity [tex]\( \ln(e^x) = x \cdot \ln(e) \)[/tex]. Because [tex]\( \ln(e) = 1 \)[/tex], this simplifies to:
[tex]\[ \begin{align*} x \cdot \ln(e) &= \ln(15.29) \\ x \cdot 1 &= \ln(15.29) \\ x &= \ln(15.29) \end{align*} \][/tex]
Thus, the equivalent logarithmic equation for [tex]\( e^x = 15.29 \)[/tex] is:
[tex]\[ \boxed{\ln(15.29) = x} \][/tex]
Therefore, the correct option is C. [tex]\(\ln 15.29 = x\)[/tex].
1. Recognize that [tex]\( e^x \)[/tex] is an exponential function, where the base is [tex]\( e \)[/tex], the natural logarithm base. The inverse operation of exponentiation with base [tex]\( e \)[/tex] is taking the natural logarithm (ln).
2. Apply the natural logarithm to both sides of the equation to isolate the variable [tex]\( x \)[/tex]. This uses the property of logarithms that states [tex]\( \ln(e^x) = x \)[/tex] because the natural logarithm and the exponential function are inverses.
[tex]\[ \begin{align*} \ln(e^x) &= \ln(15.29) \end{align*} \][/tex]
3. Use the logarithmic identity [tex]\( \ln(e^x) = x \cdot \ln(e) \)[/tex]. Because [tex]\( \ln(e) = 1 \)[/tex], this simplifies to:
[tex]\[ \begin{align*} x \cdot \ln(e) &= \ln(15.29) \\ x \cdot 1 &= \ln(15.29) \\ x &= \ln(15.29) \end{align*} \][/tex]
Thus, the equivalent logarithmic equation for [tex]\( e^x = 15.29 \)[/tex] is:
[tex]\[ \boxed{\ln(15.29) = x} \][/tex]
Therefore, the correct option is C. [tex]\(\ln 15.29 = x\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.