Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's use Cramer's rule to solve each of the given systems of linear equations step-by-step.
### Part (a)
The system of linear equations is:
[tex]\[ \begin{cases} 2x - 3y - z = 4 \\ x - 2y - z = 1 \\ x - y + 2z = 9 \end{cases} \][/tex]
We can represent this system in matrix form as [tex]\(AX = B\)[/tex], where:
[tex]\[ A = \begin{pmatrix} 2 & -3 & -1 \\ 1 & -2 & -1 \\ 1 & -1 & 2 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 4 \\ 1 \\ 9 \end{pmatrix} \][/tex]
To find [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex] using Cramer's rule, we first find the determinant of matrix [tex]\(A\)[/tex], denoted as [tex]\(\det(A)\)[/tex].
The determinants of matrices [tex]\(A_x\)[/tex], [tex]\(A_y\)[/tex], and [tex]\(A_z\)[/tex] are found by replacing the corresponding columns of [tex]\(A\)[/tex] with [tex]\(B\)[/tex]:
1. [tex]\(\det(A_x)\)[/tex]: Replace the first column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_x = \begin{pmatrix} 4 & -3 & -1 \\ 1 & -2 & -1 \\ 9 & -1 & 2 \end{pmatrix} \][/tex]
2. [tex]\(\det(A_y)\)[/tex]: Replace the second column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_y = \begin{pmatrix} 2 & 4 & -1 \\ 1 & 1 & -1 \\ 1 & 9 & 2 \end{pmatrix} \][/tex]
3. [tex]\(\det(A_z)\)[/tex]: Replace the third column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_z = \begin{pmatrix} 2 & -3 & 4 \\ 1 & -2 & 1 \\ 1 & -1 & 9 \end{pmatrix} \][/tex]
Next, the solutions for [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex] can be found by:
[tex]\[ x = \frac{\det(A_x)}{\det(A)}, \quad y = \frac{\det(A_y)}{\det(A)}, \quad z = \frac{\det(A_z)}{\det(A)} \][/tex]
By calculating the determinants, we get:
[tex]\[ x \approx 2, \quad y \approx -1, \quad z \approx 3 \][/tex]
### Part (b)
The system of linear equations is:
[tex]\[ \begin{cases} x + y - z = 1 \\ y + z = 2 \\ x - y = 0 \end{cases} \][/tex]
We can represent this system in matrix form as [tex]\(AX = B\)[/tex], where:
[tex]\[ A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \][/tex]
Finding the determinants for [tex]\(A_x\)[/tex], [tex]\(A_y\)[/tex], and [tex]\(A_z\)[/tex]:
1. [tex]\(\det(A_x)\)[/tex]: Replace the first column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_x = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 1 \\ 0 & -1 & 0 \end{pmatrix} \][/tex]
2. [tex]\(\det(A_y)\)[/tex]: Replace the second column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_y = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 1 \\ 1 & 0 & 0 \end{pmatrix} \][/tex]
3. [tex]\(\det(A_z)\)[/tex]: Replace the third column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_z = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & -1 & 0 \end{pmatrix} \][/tex]
By calculating the determinants, we find solutions:
[tex]\[ x = 1, \quad y = 1, \quad z = 1 \][/tex]
### Part (c)
The system of linear equations is:
[tex]\[ \begin{cases} 2x + 3y = 4 \\ 4y + 3x = -5 \\ 4x + z = 5 \end{cases} \][/tex]
We can represent this system in matrix form as [tex]\(AX = B\)[/tex], where:
[tex]\[ A = \begin{pmatrix} 2 & 3 & 0 \\ 3 & 4 & 0 \\ 4 & 0 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 4 \\ -5 \\ 5 \end{pmatrix} \][/tex]
Finding the determinants for [tex]\(A_x\)[/tex], [tex]\(A_y\)[/tex], and [tex]\(A_z\)[/tex]:
1. [tex]\(\det(A_x)\)[/tex]: Replace the first column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_x = \begin{pmatrix} 4 & 3 & 0 \\ -5 & 4 & 0 \\ 5 & 0 & 1 \end{pmatrix} \][/tex]
2. [tex]\(\det(A_y)\)[/tex]: Replace the second column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_y = \begin{pmatrix} 2 & 4 & 0 \\ 3 & -5 & 0 \\ 4 & 5 & 1 \end{pmatrix} \][/tex]
3. [tex]\(\det(A_z)\)[/tex]: Replace the third column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_z = \begin{pmatrix} 2 & 3 & 4 \\ 3 & 4 & -5 \\ 4 & 0 & 5 \end{pmatrix} \][/tex]
By calculating the determinants, we find solutions:
[tex]\[ x \approx -31, \quad y \approx 22, \quad z \approx 129 \][/tex]
Thus, the solutions to the systems of linear equations are:
- Part (a): [tex]\(x \approx 2\)[/tex], [tex]\(y \approx -1\)[/tex], [tex]\(z \approx 3\)[/tex]
- Part (b): [tex]\(x = 1\)[/tex], [tex]\(y = 1\)[/tex], [tex]\(z = 1\)[/tex]
- Part (c): [tex]\(x \approx -31\)[/tex], [tex]\(y \approx 22\)[/tex], [tex]\(z \approx 129\)[/tex]
### Part (a)
The system of linear equations is:
[tex]\[ \begin{cases} 2x - 3y - z = 4 \\ x - 2y - z = 1 \\ x - y + 2z = 9 \end{cases} \][/tex]
We can represent this system in matrix form as [tex]\(AX = B\)[/tex], where:
[tex]\[ A = \begin{pmatrix} 2 & -3 & -1 \\ 1 & -2 & -1 \\ 1 & -1 & 2 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 4 \\ 1 \\ 9 \end{pmatrix} \][/tex]
To find [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex] using Cramer's rule, we first find the determinant of matrix [tex]\(A\)[/tex], denoted as [tex]\(\det(A)\)[/tex].
The determinants of matrices [tex]\(A_x\)[/tex], [tex]\(A_y\)[/tex], and [tex]\(A_z\)[/tex] are found by replacing the corresponding columns of [tex]\(A\)[/tex] with [tex]\(B\)[/tex]:
1. [tex]\(\det(A_x)\)[/tex]: Replace the first column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_x = \begin{pmatrix} 4 & -3 & -1 \\ 1 & -2 & -1 \\ 9 & -1 & 2 \end{pmatrix} \][/tex]
2. [tex]\(\det(A_y)\)[/tex]: Replace the second column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_y = \begin{pmatrix} 2 & 4 & -1 \\ 1 & 1 & -1 \\ 1 & 9 & 2 \end{pmatrix} \][/tex]
3. [tex]\(\det(A_z)\)[/tex]: Replace the third column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_z = \begin{pmatrix} 2 & -3 & 4 \\ 1 & -2 & 1 \\ 1 & -1 & 9 \end{pmatrix} \][/tex]
Next, the solutions for [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex] can be found by:
[tex]\[ x = \frac{\det(A_x)}{\det(A)}, \quad y = \frac{\det(A_y)}{\det(A)}, \quad z = \frac{\det(A_z)}{\det(A)} \][/tex]
By calculating the determinants, we get:
[tex]\[ x \approx 2, \quad y \approx -1, \quad z \approx 3 \][/tex]
### Part (b)
The system of linear equations is:
[tex]\[ \begin{cases} x + y - z = 1 \\ y + z = 2 \\ x - y = 0 \end{cases} \][/tex]
We can represent this system in matrix form as [tex]\(AX = B\)[/tex], where:
[tex]\[ A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \][/tex]
Finding the determinants for [tex]\(A_x\)[/tex], [tex]\(A_y\)[/tex], and [tex]\(A_z\)[/tex]:
1. [tex]\(\det(A_x)\)[/tex]: Replace the first column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_x = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 1 \\ 0 & -1 & 0 \end{pmatrix} \][/tex]
2. [tex]\(\det(A_y)\)[/tex]: Replace the second column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_y = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 1 \\ 1 & 0 & 0 \end{pmatrix} \][/tex]
3. [tex]\(\det(A_z)\)[/tex]: Replace the third column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_z = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & -1 & 0 \end{pmatrix} \][/tex]
By calculating the determinants, we find solutions:
[tex]\[ x = 1, \quad y = 1, \quad z = 1 \][/tex]
### Part (c)
The system of linear equations is:
[tex]\[ \begin{cases} 2x + 3y = 4 \\ 4y + 3x = -5 \\ 4x + z = 5 \end{cases} \][/tex]
We can represent this system in matrix form as [tex]\(AX = B\)[/tex], where:
[tex]\[ A = \begin{pmatrix} 2 & 3 & 0 \\ 3 & 4 & 0 \\ 4 & 0 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 4 \\ -5 \\ 5 \end{pmatrix} \][/tex]
Finding the determinants for [tex]\(A_x\)[/tex], [tex]\(A_y\)[/tex], and [tex]\(A_z\)[/tex]:
1. [tex]\(\det(A_x)\)[/tex]: Replace the first column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_x = \begin{pmatrix} 4 & 3 & 0 \\ -5 & 4 & 0 \\ 5 & 0 & 1 \end{pmatrix} \][/tex]
2. [tex]\(\det(A_y)\)[/tex]: Replace the second column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_y = \begin{pmatrix} 2 & 4 & 0 \\ 3 & -5 & 0 \\ 4 & 5 & 1 \end{pmatrix} \][/tex]
3. [tex]\(\det(A_z)\)[/tex]: Replace the third column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
[tex]\[ A_z = \begin{pmatrix} 2 & 3 & 4 \\ 3 & 4 & -5 \\ 4 & 0 & 5 \end{pmatrix} \][/tex]
By calculating the determinants, we find solutions:
[tex]\[ x \approx -31, \quad y \approx 22, \quad z \approx 129 \][/tex]
Thus, the solutions to the systems of linear equations are:
- Part (a): [tex]\(x \approx 2\)[/tex], [tex]\(y \approx -1\)[/tex], [tex]\(z \approx 3\)[/tex]
- Part (b): [tex]\(x = 1\)[/tex], [tex]\(y = 1\)[/tex], [tex]\(z = 1\)[/tex]
- Part (c): [tex]\(x \approx -31\)[/tex], [tex]\(y \approx 22\)[/tex], [tex]\(z \approx 129\)[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.