Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To simplify the expression [tex]\(\left(\frac{x^{1 / 2}}{x^{1 / 3}}\right)^{1 / 4}\)[/tex] to a single power of [tex]\(x\)[/tex], we can follow these steps:
1. Simplify the expression inside the parentheses first. We use the property of exponents that states [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex].
[tex]\[\frac{x^{1 / 2}}{x^{1 / 3}} = x^{(1 / 2) - (1 / 3)}\][/tex]
2. Next, we need to subtract the exponents [tex]\(\frac{1}{2}\)[/tex] and [tex]\(\frac{1}{3}\)[/tex]. In order to do this, we convert both fractions to have a common denominator. The least common denominator for 2 and 3 is 6.
[tex]\[ \frac{1}{2} = \frac{3}{6} \quad \text{and} \quad \frac{1}{3} = \frac{2}{6} \][/tex]
3. Now we subtract the fractions:
[tex]\[ \frac{3}{6} - \frac{2}{6} = \frac{1}{6} \][/tex]
So, [tex]\(\frac{x^{1 / 2}}{x^{1 / 3}}\)[/tex] simplifies to [tex]\(x^{1 / 6}\)[/tex].
4. Now consider the outer exponent, [tex]\((\cdot)^{1 / 4}\)[/tex]. We apply the rule [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ \left(x^{1 / 6}\right)^{1 / 4} = x^{(1 / 6) \cdot (1 / 4)} \][/tex]
5. Multiply the exponents:
[tex]\[ \frac{1}{6} \cdot \frac{1}{4} = \frac{1}{24} \][/tex]
6. Therefore, the simplified expression is:
[tex]\[ x^{1 / 24} \][/tex]
Thus, [tex]\(\left(\frac{x^{1 / 2}}{x^{1 / 3}}\right)^{1 / 4}\)[/tex] simplifies to [tex]\(x^{1 / 24}\)[/tex].
1. Simplify the expression inside the parentheses first. We use the property of exponents that states [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex].
[tex]\[\frac{x^{1 / 2}}{x^{1 / 3}} = x^{(1 / 2) - (1 / 3)}\][/tex]
2. Next, we need to subtract the exponents [tex]\(\frac{1}{2}\)[/tex] and [tex]\(\frac{1}{3}\)[/tex]. In order to do this, we convert both fractions to have a common denominator. The least common denominator for 2 and 3 is 6.
[tex]\[ \frac{1}{2} = \frac{3}{6} \quad \text{and} \quad \frac{1}{3} = \frac{2}{6} \][/tex]
3. Now we subtract the fractions:
[tex]\[ \frac{3}{6} - \frac{2}{6} = \frac{1}{6} \][/tex]
So, [tex]\(\frac{x^{1 / 2}}{x^{1 / 3}}\)[/tex] simplifies to [tex]\(x^{1 / 6}\)[/tex].
4. Now consider the outer exponent, [tex]\((\cdot)^{1 / 4}\)[/tex]. We apply the rule [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ \left(x^{1 / 6}\right)^{1 / 4} = x^{(1 / 6) \cdot (1 / 4)} \][/tex]
5. Multiply the exponents:
[tex]\[ \frac{1}{6} \cdot \frac{1}{4} = \frac{1}{24} \][/tex]
6. Therefore, the simplified expression is:
[tex]\[ x^{1 / 24} \][/tex]
Thus, [tex]\(\left(\frac{x^{1 / 2}}{x^{1 / 3}}\right)^{1 / 4}\)[/tex] simplifies to [tex]\(x^{1 / 24}\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.