Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's solve this step by step.
1. Calculating the Third Angle:
- In any triangle, the sum of the angles is [tex]\( 180^{\circ} \)[/tex].
- In a right triangle, one of these angles is always [tex]\( 90^{\circ} \)[/tex].
- Given one angle is [tex]\( 35^{\circ} \)[/tex], let's denote this angle as [tex]\( \angle A \)[/tex].
- Let's denote the right angle as [tex]\( \angle B = 90^{\circ} \)[/tex].
To find the third angle ([tex]\(\angle C\)[/tex]):
[tex]\[ \angle C = 180^{\circ} - 90^{\circ} - 35^{\circ} = 55^{\circ} \][/tex]
2. Calculate the Length of the Hypotenuse:
- Let's denote the adjacent side to the [tex]\( 35^{\circ} \)[/tex] angle (usually given) as [tex]\( \text{adjacent} = 7 \)[/tex] units.
- We use the cosine function, which relates the adjacent side and the hypotenuse in a right triangle:
[tex]\[ \cos(35^{\circ}) = \frac{\text{adjacent}}{\text{hypotenuse}} \][/tex]
Solving for the hypotenuse:
[tex]\[ \text{hypotenuse} = \frac{\text{adjacent}}{\cos(35^{\circ})} \][/tex]
The hypotenuse is approximately:
[tex]\[ \text{hypotenuse} \approx 8.5454 \text{ units} \][/tex]
3. Calculate the Length of the Missing Side [tex]\( x \)[/tex] (Opposite side):
- We use the tangent function, which relates the opposite side and the adjacent side in a right triangle:
[tex]\[ \tan(35^{\circ}) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
Solving for the opposite side:
[tex]\[ \text{opposite} = \text{adjacent} \times \tan(35^{\circ}) \][/tex]
The opposite side [tex]\( x \)[/tex] is approximately:
[tex]\[ x \approx 4.9015 \text{ units} \][/tex]
In summary:
1. The third angle is [tex]\( 55^{\circ} \)[/tex].
2. The length of the hypotenuse is approximately [tex]\( 8.5454 \)[/tex] units.
3. The length of the missing side [tex]\( x \)[/tex] (opposite the [tex]\( 35^{\circ} \)[/tex] angle) is approximately [tex]\( 4.9015 \)[/tex] units.
1. Calculating the Third Angle:
- In any triangle, the sum of the angles is [tex]\( 180^{\circ} \)[/tex].
- In a right triangle, one of these angles is always [tex]\( 90^{\circ} \)[/tex].
- Given one angle is [tex]\( 35^{\circ} \)[/tex], let's denote this angle as [tex]\( \angle A \)[/tex].
- Let's denote the right angle as [tex]\( \angle B = 90^{\circ} \)[/tex].
To find the third angle ([tex]\(\angle C\)[/tex]):
[tex]\[ \angle C = 180^{\circ} - 90^{\circ} - 35^{\circ} = 55^{\circ} \][/tex]
2. Calculate the Length of the Hypotenuse:
- Let's denote the adjacent side to the [tex]\( 35^{\circ} \)[/tex] angle (usually given) as [tex]\( \text{adjacent} = 7 \)[/tex] units.
- We use the cosine function, which relates the adjacent side and the hypotenuse in a right triangle:
[tex]\[ \cos(35^{\circ}) = \frac{\text{adjacent}}{\text{hypotenuse}} \][/tex]
Solving for the hypotenuse:
[tex]\[ \text{hypotenuse} = \frac{\text{adjacent}}{\cos(35^{\circ})} \][/tex]
The hypotenuse is approximately:
[tex]\[ \text{hypotenuse} \approx 8.5454 \text{ units} \][/tex]
3. Calculate the Length of the Missing Side [tex]\( x \)[/tex] (Opposite side):
- We use the tangent function, which relates the opposite side and the adjacent side in a right triangle:
[tex]\[ \tan(35^{\circ}) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
Solving for the opposite side:
[tex]\[ \text{opposite} = \text{adjacent} \times \tan(35^{\circ}) \][/tex]
The opposite side [tex]\( x \)[/tex] is approximately:
[tex]\[ x \approx 4.9015 \text{ units} \][/tex]
In summary:
1. The third angle is [tex]\( 55^{\circ} \)[/tex].
2. The length of the hypotenuse is approximately [tex]\( 8.5454 \)[/tex] units.
3. The length of the missing side [tex]\( x \)[/tex] (opposite the [tex]\( 35^{\circ} \)[/tex] angle) is approximately [tex]\( 4.9015 \)[/tex] units.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.