Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the 5-number summary of the given machine belt diameters and the skewness of the data, we'll consider each part step-by-step.
1. Minimum: This is the smallest number in the data set.
- Given diameters are: [tex]\(6, 4, 10, 2, 6, 5, 7, 3, 5, 7, 3\)[/tex].
- The minimum diameter is [tex]\(2\)[/tex] inches.
2. First Quartile ([tex]\(Q_1\)[/tex]): This is the median of the first half of the data (or 25th percentile).
- For this, we need the sorted data set: [tex]\(2, 3, 3, 4, 5, 5, 6, 6, 7, 7, 10\)[/tex].
- The first quartile ([tex]\(Q_1\)[/tex]) is [tex]\(3.5\)[/tex] inches.
3. Median: This is the middle number of the data set.
- The sorted data set is: [tex]\(2, 3, 3, 4, 5, 5, 6, 6, 7, 7, 10\)[/tex].
- Since we have 11 numbers (odd number), the median is the 6th number, which is [tex]\(5\)[/tex] inches.
4. Third Quartile ([tex]\(Q_3\)[/tex]): This is the median of the second half of the data (or 75th percentile).
- Considering the sorted data: [tex]\(2, 3, 3, 4, 5, 5, 6, 6, 7, 7, 10\)[/tex].
- The third quartile ([tex]\(Q_3\)[/tex]) is [tex]\(6.5\)[/tex] inches.
5. Maximum: This is the largest number in the data set.
- The maximum diameter is [tex]\(10\)[/tex] inches.
6. Skewness:
- To determine skewness, we look at where the median is positioned relative to the minimum and maximum.
- Given the data set's minimum, median, and maximum values, the skewness is determined as `'R'` (right-skewed).
So, putting this all together:
- Minimum [tex]\(= 2\)[/tex] inches
- [tex]\(Q_1 = 3.5\)[/tex] inches
- Median [tex]\(= 5\)[/tex] inches
- [tex]\(Q_3 = 6.5\)[/tex] inches
- Maximum [tex]\(= 10\)[/tex] inches
The measurements skew to the right, so the answer is [tex]\( R \)[/tex].
1. Minimum: This is the smallest number in the data set.
- Given diameters are: [tex]\(6, 4, 10, 2, 6, 5, 7, 3, 5, 7, 3\)[/tex].
- The minimum diameter is [tex]\(2\)[/tex] inches.
2. First Quartile ([tex]\(Q_1\)[/tex]): This is the median of the first half of the data (or 25th percentile).
- For this, we need the sorted data set: [tex]\(2, 3, 3, 4, 5, 5, 6, 6, 7, 7, 10\)[/tex].
- The first quartile ([tex]\(Q_1\)[/tex]) is [tex]\(3.5\)[/tex] inches.
3. Median: This is the middle number of the data set.
- The sorted data set is: [tex]\(2, 3, 3, 4, 5, 5, 6, 6, 7, 7, 10\)[/tex].
- Since we have 11 numbers (odd number), the median is the 6th number, which is [tex]\(5\)[/tex] inches.
4. Third Quartile ([tex]\(Q_3\)[/tex]): This is the median of the second half of the data (or 75th percentile).
- Considering the sorted data: [tex]\(2, 3, 3, 4, 5, 5, 6, 6, 7, 7, 10\)[/tex].
- The third quartile ([tex]\(Q_3\)[/tex]) is [tex]\(6.5\)[/tex] inches.
5. Maximum: This is the largest number in the data set.
- The maximum diameter is [tex]\(10\)[/tex] inches.
6. Skewness:
- To determine skewness, we look at where the median is positioned relative to the minimum and maximum.
- Given the data set's minimum, median, and maximum values, the skewness is determined as `'R'` (right-skewed).
So, putting this all together:
- Minimum [tex]\(= 2\)[/tex] inches
- [tex]\(Q_1 = 3.5\)[/tex] inches
- Median [tex]\(= 5\)[/tex] inches
- [tex]\(Q_3 = 6.5\)[/tex] inches
- Maximum [tex]\(= 10\)[/tex] inches
The measurements skew to the right, so the answer is [tex]\( R \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.