At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the triangle where the angle [tex]\( x \)[/tex] is equal to [tex]\( \tan^{-1}\left(\frac{3.1}{5.2}\right) \)[/tex], we need to focus on the relationship between the sides of the right triangle and the angle [tex]\( x \)[/tex].
### Step-by-Step Solution:
1. Definition of the Tangent Function:
The tangent of an angle in a right triangle is defined as the ratio of the length of the opposite side to the length of the adjacent side. Mathematically:
[tex]\[ \tan(x) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
2. Given Information:
We are given that:
[tex]\[ x = \tan^{-1}\left(\frac{3.1}{5.2}\right) \][/tex]
3. Calculate [tex]\( x \)[/tex]:
From this relationship, we know that [tex]\( x \)[/tex] is the angle whose tangent is [tex]\(\frac{3.1}{5.2}\)[/tex].
4. Angle in Degrees:
The value of [tex]\( x \)[/tex] in degrees can be found using the arctangent function (inverse tangent). From the result, we know:
[tex]\[ x \approx 30.80144597613683^\circ \][/tex]
5. Angle in Radians:
Similarly, the value of [tex]\( x \)[/tex] in radians is:
[tex]\[ x \approx 0.5375866466587464 \text{ radians} \][/tex]
6. Identifying the Triangle:
To find the triangle with this angle, look for a right triangle where the ratio of the side lengths (opposite to [tex]\( x \)[/tex] over adjacent to [tex]\( x \)[/tex]) is [tex]\(\frac{3.1}{5.2}\)[/tex].
Thus, the triangle you are looking for is a right triangle with an angle [tex]\( x \approx 30.8^\circ \)[/tex] or [tex]\( x \approx 0.538 \text{ radians} \)[/tex] such that:
[tex]\[ \tan(x) = \frac{3.1}{5.2} \][/tex]
You will find [tex]\( x \)[/tex] in the triangle where:
- The length of the side opposite [tex]\( x \)[/tex] is [tex]\( 3.1 \)[/tex],
- The length of the side adjacent to [tex]\( x \)[/tex] is [tex]\( 5.2 \)[/tex],
or any triangle with a proportional relationship (similar triangles) to these side lengths.
### Step-by-Step Solution:
1. Definition of the Tangent Function:
The tangent of an angle in a right triangle is defined as the ratio of the length of the opposite side to the length of the adjacent side. Mathematically:
[tex]\[ \tan(x) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
2. Given Information:
We are given that:
[tex]\[ x = \tan^{-1}\left(\frac{3.1}{5.2}\right) \][/tex]
3. Calculate [tex]\( x \)[/tex]:
From this relationship, we know that [tex]\( x \)[/tex] is the angle whose tangent is [tex]\(\frac{3.1}{5.2}\)[/tex].
4. Angle in Degrees:
The value of [tex]\( x \)[/tex] in degrees can be found using the arctangent function (inverse tangent). From the result, we know:
[tex]\[ x \approx 30.80144597613683^\circ \][/tex]
5. Angle in Radians:
Similarly, the value of [tex]\( x \)[/tex] in radians is:
[tex]\[ x \approx 0.5375866466587464 \text{ radians} \][/tex]
6. Identifying the Triangle:
To find the triangle with this angle, look for a right triangle where the ratio of the side lengths (opposite to [tex]\( x \)[/tex] over adjacent to [tex]\( x \)[/tex]) is [tex]\(\frac{3.1}{5.2}\)[/tex].
Thus, the triangle you are looking for is a right triangle with an angle [tex]\( x \approx 30.8^\circ \)[/tex] or [tex]\( x \approx 0.538 \text{ radians} \)[/tex] such that:
[tex]\[ \tan(x) = \frac{3.1}{5.2} \][/tex]
You will find [tex]\( x \)[/tex] in the triangle where:
- The length of the side opposite [tex]\( x \)[/tex] is [tex]\( 3.1 \)[/tex],
- The length of the side adjacent to [tex]\( x \)[/tex] is [tex]\( 5.2 \)[/tex],
or any triangle with a proportional relationship (similar triangles) to these side lengths.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.