Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the measure of [tex]\(\angle X\)[/tex] and its exterior angle in the triangle [tex]\(XYZ\)[/tex], let's go through the given information and utilize it step-by-step.
Given:
- [tex]\(m\angle X = (7g + 12)^\circ\)[/tex]
- The exterior angle to [tex]\(\angle X\)[/tex] measures [tex]\((2g + 60)^\circ\)[/tex]
### Step 1: Understand the relationship between an interior angle and its exterior angle
Interior and exterior angles at a point on a straight line add up to [tex]\(180^\circ\)[/tex]. Therefore, we have:
[tex]\[ (7g + 12)^\circ + (2g + 60)^\circ = 180^\circ \][/tex]
### Step 2: Formulate the equation from the angle relationships
Combine the expressions for the interior and exterior angles:
[tex]\[ 7g + 12 + 2g + 60 = 180 \][/tex]
### Step 3: Simplify the equation
Combine like terms on the left-hand side:
[tex]\[ 9g + 72 = 180 \][/tex]
### Step 4: Solve for [tex]\(g\)[/tex]
Isolate [tex]\(g\)[/tex] by subtracting 72 from both sides:
[tex]\[ 9g = 108 \][/tex]
Then, divide by 9:
[tex]\[ g = 12 \][/tex]
### Step 5: Calculate the measures of the angles
Substitute [tex]\(g = 12\)[/tex] back into the expressions for the interior and exterior angles:
- Interior angle [tex]\(m\angle X\)[/tex]:
[tex]\[ 7g + 12 = 7(12) + 12 = 84 + 12 = 96^\circ \][/tex]
- Exterior angle:
[tex]\[ 2g + 60 = 2(12) + 60 = 24 + 60 = 84^\circ \][/tex]
### Conclusion:
The measures are:
- Interior angle [tex]\(\angle X = 96^\circ\)[/tex]
- Exterior angle = [tex]\(84^\circ\)[/tex]
Thus, the correct option is:
- Interior angle [tex]\(= 96^\circ\)[/tex]; exterior angle [tex]\(= 84^\circ\)[/tex]
Given:
- [tex]\(m\angle X = (7g + 12)^\circ\)[/tex]
- The exterior angle to [tex]\(\angle X\)[/tex] measures [tex]\((2g + 60)^\circ\)[/tex]
### Step 1: Understand the relationship between an interior angle and its exterior angle
Interior and exterior angles at a point on a straight line add up to [tex]\(180^\circ\)[/tex]. Therefore, we have:
[tex]\[ (7g + 12)^\circ + (2g + 60)^\circ = 180^\circ \][/tex]
### Step 2: Formulate the equation from the angle relationships
Combine the expressions for the interior and exterior angles:
[tex]\[ 7g + 12 + 2g + 60 = 180 \][/tex]
### Step 3: Simplify the equation
Combine like terms on the left-hand side:
[tex]\[ 9g + 72 = 180 \][/tex]
### Step 4: Solve for [tex]\(g\)[/tex]
Isolate [tex]\(g\)[/tex] by subtracting 72 from both sides:
[tex]\[ 9g = 108 \][/tex]
Then, divide by 9:
[tex]\[ g = 12 \][/tex]
### Step 5: Calculate the measures of the angles
Substitute [tex]\(g = 12\)[/tex] back into the expressions for the interior and exterior angles:
- Interior angle [tex]\(m\angle X\)[/tex]:
[tex]\[ 7g + 12 = 7(12) + 12 = 84 + 12 = 96^\circ \][/tex]
- Exterior angle:
[tex]\[ 2g + 60 = 2(12) + 60 = 24 + 60 = 84^\circ \][/tex]
### Conclusion:
The measures are:
- Interior angle [tex]\(\angle X = 96^\circ\)[/tex]
- Exterior angle = [tex]\(84^\circ\)[/tex]
Thus, the correct option is:
- Interior angle [tex]\(= 96^\circ\)[/tex]; exterior angle [tex]\(= 84^\circ\)[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.