Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the measure of [tex]\(\angle X\)[/tex] and its exterior angle in the triangle [tex]\(XYZ\)[/tex], let's go through the given information and utilize it step-by-step.
Given:
- [tex]\(m\angle X = (7g + 12)^\circ\)[/tex]
- The exterior angle to [tex]\(\angle X\)[/tex] measures [tex]\((2g + 60)^\circ\)[/tex]
### Step 1: Understand the relationship between an interior angle and its exterior angle
Interior and exterior angles at a point on a straight line add up to [tex]\(180^\circ\)[/tex]. Therefore, we have:
[tex]\[ (7g + 12)^\circ + (2g + 60)^\circ = 180^\circ \][/tex]
### Step 2: Formulate the equation from the angle relationships
Combine the expressions for the interior and exterior angles:
[tex]\[ 7g + 12 + 2g + 60 = 180 \][/tex]
### Step 3: Simplify the equation
Combine like terms on the left-hand side:
[tex]\[ 9g + 72 = 180 \][/tex]
### Step 4: Solve for [tex]\(g\)[/tex]
Isolate [tex]\(g\)[/tex] by subtracting 72 from both sides:
[tex]\[ 9g = 108 \][/tex]
Then, divide by 9:
[tex]\[ g = 12 \][/tex]
### Step 5: Calculate the measures of the angles
Substitute [tex]\(g = 12\)[/tex] back into the expressions for the interior and exterior angles:
- Interior angle [tex]\(m\angle X\)[/tex]:
[tex]\[ 7g + 12 = 7(12) + 12 = 84 + 12 = 96^\circ \][/tex]
- Exterior angle:
[tex]\[ 2g + 60 = 2(12) + 60 = 24 + 60 = 84^\circ \][/tex]
### Conclusion:
The measures are:
- Interior angle [tex]\(\angle X = 96^\circ\)[/tex]
- Exterior angle = [tex]\(84^\circ\)[/tex]
Thus, the correct option is:
- Interior angle [tex]\(= 96^\circ\)[/tex]; exterior angle [tex]\(= 84^\circ\)[/tex]
Given:
- [tex]\(m\angle X = (7g + 12)^\circ\)[/tex]
- The exterior angle to [tex]\(\angle X\)[/tex] measures [tex]\((2g + 60)^\circ\)[/tex]
### Step 1: Understand the relationship between an interior angle and its exterior angle
Interior and exterior angles at a point on a straight line add up to [tex]\(180^\circ\)[/tex]. Therefore, we have:
[tex]\[ (7g + 12)^\circ + (2g + 60)^\circ = 180^\circ \][/tex]
### Step 2: Formulate the equation from the angle relationships
Combine the expressions for the interior and exterior angles:
[tex]\[ 7g + 12 + 2g + 60 = 180 \][/tex]
### Step 3: Simplify the equation
Combine like terms on the left-hand side:
[tex]\[ 9g + 72 = 180 \][/tex]
### Step 4: Solve for [tex]\(g\)[/tex]
Isolate [tex]\(g\)[/tex] by subtracting 72 from both sides:
[tex]\[ 9g = 108 \][/tex]
Then, divide by 9:
[tex]\[ g = 12 \][/tex]
### Step 5: Calculate the measures of the angles
Substitute [tex]\(g = 12\)[/tex] back into the expressions for the interior and exterior angles:
- Interior angle [tex]\(m\angle X\)[/tex]:
[tex]\[ 7g + 12 = 7(12) + 12 = 84 + 12 = 96^\circ \][/tex]
- Exterior angle:
[tex]\[ 2g + 60 = 2(12) + 60 = 24 + 60 = 84^\circ \][/tex]
### Conclusion:
The measures are:
- Interior angle [tex]\(\angle X = 96^\circ\)[/tex]
- Exterior angle = [tex]\(84^\circ\)[/tex]
Thus, the correct option is:
- Interior angle [tex]\(= 96^\circ\)[/tex]; exterior angle [tex]\(= 84^\circ\)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.