Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the enthalpy change for the given reaction, we need to use the formula:
[tex]\[ \Delta H_{reaction} = \sum \left(\Delta H_{f, \text{products}}\right) - \sum \left(\Delta H_{f, \text{reactants}}\right) \][/tex]
First, let us write down the enthalpies of formation for the substances involved in the reaction:
- Enthalpy of formation of [tex]\( NH_3 \)[/tex] [tex]\( (\Delta H_f(NH_3)) = -45.9 \, \text{kJ/mol} \)[/tex]
- Enthalpy of formation of [tex]\( H_2O \)[/tex] [tex]\( (\Delta H_f(H_2O)) = -241.8 \, \text{kJ/mol} \)[/tex]
- Enthalpy of formation of [tex]\( NO \)[/tex] [tex]\( (\Delta H_f(NO)) = 91.3 \, \text{kJ/mol} \)[/tex]
- Enthalpy of formation of [tex]\( O_2 \)[/tex] [tex]\( (\Delta H_f(O_2)) = 0 \, \text{kJ/mol} \)[/tex] (since [tex]\( O_2 \)[/tex] is a diatomic element in its standard state)
The given reaction is:
[tex]\[ 4 \, NH_3(g) + 5 \, O_2(g) \rightarrow 6 \, H_2O(g) + 4 \, NO(g) \][/tex]
Next, we calculate the sum of the enthalpies of formation for the products:
[tex]\[ \sum \left( \Delta H_{f, \text{products}} \right) = \left( 6 \times \Delta H_f(H_2O) \right) + \left( 4 \times \Delta H_f(NO) \right) \][/tex]
Substituting the values:
[tex]\[ \sum \left( \Delta H_{f, \text{products}} \right) = \left( 6 \times -241.8 \right) + \left( 4 \times 91.3 \right) \][/tex]
[tex]\[ \sum \left( \Delta H_{f, \text{products}} \right) = -1450.8 + 365.2 = -1085.6 \, \text{kJ} \][/tex]
Then, we calculate the sum of the enthalpies of formation for the reactants:
[tex]\[ \sum \left( \Delta H_{f, \text{reactants}} \right) = \left( 4 \times \Delta H_f(NH_3) \right) + \left( 5 \times \Delta H_f(O_2) \right) \][/tex]
Substituting the values:
[tex]\[ \sum \left( \Delta H_{f, \text{reactants}} \right) = \left( 4 \times -45.9 \right) + \left( 5 \times 0 \right) \][/tex]
[tex]\[ \sum \left( \Delta H_{f, \text{reactants}} \right) = -183.6 \, \text{kJ} \][/tex]
Finally, we find the enthalpy change of the reaction:
[tex]\[ \Delta H_{reaction} = \sum \left( \Delta H_{f, \text{products}} \right) - \sum \left( \Delta H_{f, \text{reactants}} \right) \][/tex]
Substituting the values:
[tex]\[ \Delta H_{reaction} = -1085.6 - (-183.6) \][/tex]
[tex]\[ \Delta H_{reaction} = -1085.6 + 183.6 = -902 \, \text{kJ} \][/tex]
Thus, the enthalpy change for the reaction is [tex]\(-902 \, \text{kJ}\)[/tex]. The correct answer is:
[tex]\[ \boxed{-902 \, \text{kJ}} \][/tex]
[tex]\[ \Delta H_{reaction} = \sum \left(\Delta H_{f, \text{products}}\right) - \sum \left(\Delta H_{f, \text{reactants}}\right) \][/tex]
First, let us write down the enthalpies of formation for the substances involved in the reaction:
- Enthalpy of formation of [tex]\( NH_3 \)[/tex] [tex]\( (\Delta H_f(NH_3)) = -45.9 \, \text{kJ/mol} \)[/tex]
- Enthalpy of formation of [tex]\( H_2O \)[/tex] [tex]\( (\Delta H_f(H_2O)) = -241.8 \, \text{kJ/mol} \)[/tex]
- Enthalpy of formation of [tex]\( NO \)[/tex] [tex]\( (\Delta H_f(NO)) = 91.3 \, \text{kJ/mol} \)[/tex]
- Enthalpy of formation of [tex]\( O_2 \)[/tex] [tex]\( (\Delta H_f(O_2)) = 0 \, \text{kJ/mol} \)[/tex] (since [tex]\( O_2 \)[/tex] is a diatomic element in its standard state)
The given reaction is:
[tex]\[ 4 \, NH_3(g) + 5 \, O_2(g) \rightarrow 6 \, H_2O(g) + 4 \, NO(g) \][/tex]
Next, we calculate the sum of the enthalpies of formation for the products:
[tex]\[ \sum \left( \Delta H_{f, \text{products}} \right) = \left( 6 \times \Delta H_f(H_2O) \right) + \left( 4 \times \Delta H_f(NO) \right) \][/tex]
Substituting the values:
[tex]\[ \sum \left( \Delta H_{f, \text{products}} \right) = \left( 6 \times -241.8 \right) + \left( 4 \times 91.3 \right) \][/tex]
[tex]\[ \sum \left( \Delta H_{f, \text{products}} \right) = -1450.8 + 365.2 = -1085.6 \, \text{kJ} \][/tex]
Then, we calculate the sum of the enthalpies of formation for the reactants:
[tex]\[ \sum \left( \Delta H_{f, \text{reactants}} \right) = \left( 4 \times \Delta H_f(NH_3) \right) + \left( 5 \times \Delta H_f(O_2) \right) \][/tex]
Substituting the values:
[tex]\[ \sum \left( \Delta H_{f, \text{reactants}} \right) = \left( 4 \times -45.9 \right) + \left( 5 \times 0 \right) \][/tex]
[tex]\[ \sum \left( \Delta H_{f, \text{reactants}} \right) = -183.6 \, \text{kJ} \][/tex]
Finally, we find the enthalpy change of the reaction:
[tex]\[ \Delta H_{reaction} = \sum \left( \Delta H_{f, \text{products}} \right) - \sum \left( \Delta H_{f, \text{reactants}} \right) \][/tex]
Substituting the values:
[tex]\[ \Delta H_{reaction} = -1085.6 - (-183.6) \][/tex]
[tex]\[ \Delta H_{reaction} = -1085.6 + 183.6 = -902 \, \text{kJ} \][/tex]
Thus, the enthalpy change for the reaction is [tex]\(-902 \, \text{kJ}\)[/tex]. The correct answer is:
[tex]\[ \boxed{-902 \, \text{kJ}} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.