Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Ammonia, [tex]NH_3 \left(\Delta H_f = -45.9 \, \text{kJ}\right)[/tex], reacts with oxygen to produce water [tex]\left(\Delta H_f = -241.8 \, \text{kJ}\right)[/tex] and nitric oxide, [tex]NO \left(\Delta H_f = 91.3 \, \text{kJ}\right)[/tex], in the following reaction:

[tex]4 \, NH_3(g) + 5 \, O_2(g) \rightarrow 6 \, H_2O(g) + 4 \, NO(g)[/tex]

What is the enthalpy change for this reaction?

Use [tex]\Delta H_{\text{reaction}} = \sum\left(\Delta H_{\text{f,products}}\right) - \sum\left(\Delta H_{\text{f,reactants}}\right)[/tex].

A. [tex]-902 \, \text{kJ}[/tex]
B. [tex]-104.6 \, \text{kJ}[/tex]
C. [tex]104.6 \, \text{kJ}[/tex]
D. [tex]900.8 \, \text{kJ}[/tex]


Sagot :

To determine the enthalpy change for the given reaction, we need to use the formula:

[tex]\[ \Delta H_{reaction} = \sum \left(\Delta H_{f, \text{products}}\right) - \sum \left(\Delta H_{f, \text{reactants}}\right) \][/tex]

First, let us write down the enthalpies of formation for the substances involved in the reaction:
- Enthalpy of formation of [tex]\( NH_3 \)[/tex] [tex]\( (\Delta H_f(NH_3)) = -45.9 \, \text{kJ/mol} \)[/tex]
- Enthalpy of formation of [tex]\( H_2O \)[/tex] [tex]\( (\Delta H_f(H_2O)) = -241.8 \, \text{kJ/mol} \)[/tex]
- Enthalpy of formation of [tex]\( NO \)[/tex] [tex]\( (\Delta H_f(NO)) = 91.3 \, \text{kJ/mol} \)[/tex]
- Enthalpy of formation of [tex]\( O_2 \)[/tex] [tex]\( (\Delta H_f(O_2)) = 0 \, \text{kJ/mol} \)[/tex] (since [tex]\( O_2 \)[/tex] is a diatomic element in its standard state)

The given reaction is:

[tex]\[ 4 \, NH_3(g) + 5 \, O_2(g) \rightarrow 6 \, H_2O(g) + 4 \, NO(g) \][/tex]

Next, we calculate the sum of the enthalpies of formation for the products:

[tex]\[ \sum \left( \Delta H_{f, \text{products}} \right) = \left( 6 \times \Delta H_f(H_2O) \right) + \left( 4 \times \Delta H_f(NO) \right) \][/tex]

Substituting the values:

[tex]\[ \sum \left( \Delta H_{f, \text{products}} \right) = \left( 6 \times -241.8 \right) + \left( 4 \times 91.3 \right) \][/tex]

[tex]\[ \sum \left( \Delta H_{f, \text{products}} \right) = -1450.8 + 365.2 = -1085.6 \, \text{kJ} \][/tex]

Then, we calculate the sum of the enthalpies of formation for the reactants:

[tex]\[ \sum \left( \Delta H_{f, \text{reactants}} \right) = \left( 4 \times \Delta H_f(NH_3) \right) + \left( 5 \times \Delta H_f(O_2) \right) \][/tex]

Substituting the values:

[tex]\[ \sum \left( \Delta H_{f, \text{reactants}} \right) = \left( 4 \times -45.9 \right) + \left( 5 \times 0 \right) \][/tex]

[tex]\[ \sum \left( \Delta H_{f, \text{reactants}} \right) = -183.6 \, \text{kJ} \][/tex]

Finally, we find the enthalpy change of the reaction:

[tex]\[ \Delta H_{reaction} = \sum \left( \Delta H_{f, \text{products}} \right) - \sum \left( \Delta H_{f, \text{reactants}} \right) \][/tex]

Substituting the values:

[tex]\[ \Delta H_{reaction} = -1085.6 - (-183.6) \][/tex]

[tex]\[ \Delta H_{reaction} = -1085.6 + 183.6 = -902 \, \text{kJ} \][/tex]

Thus, the enthalpy change for the reaction is [tex]\(-902 \, \text{kJ}\)[/tex]. The correct answer is:

[tex]\[ \boxed{-902 \, \text{kJ}} \][/tex]