Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the distance between two points in a coordinate plane, we use the distance formula:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
In this problem, Miguel wants to find the distance between points [tex]\( A \)[/tex] and [tex]\( B \)[/tex]. The coordinates of point [tex]\( A \)[/tex] are [tex]\((0,0)\)[/tex] and the coordinates of point [tex]\( B \)[/tex] are [tex]\((a,0)\)[/tex].
Now, let's apply these coordinates to the distance formula:
- [tex]\( x_1 = 0 \)[/tex]
- [tex]\( y_1 = 0 \)[/tex]
- [tex]\( x_2 = a \)[/tex]
- [tex]\( y_2 = 0 \)[/tex]
Substitute the coordinates into the formula:
[tex]\[ \text{Distance} = \sqrt{(a - 0)^2 + (0 - 0)^2} \][/tex]
Simplify the expression inside the square root:
[tex]\[ \text{Distance} = \sqrt{a^2 + 0^2} \][/tex]
Since [tex]\( 0^2 = 0 \)[/tex], the expression simplifies to:
[tex]\[ \text{Distance} = \sqrt{a^2} \][/tex]
Finally, the square root of [tex]\( a^2 \)[/tex] is [tex]\( a \)[/tex] (assuming [tex]\( a \)[/tex] is non-negative):
[tex]\[ \text{Distance} = a \][/tex]
Thus, the formula Miguel can use to determine the distance from point [tex]\( A \)[/tex] to point [tex]\( B \)[/tex] is:
[tex]\[ \sqrt{(a-0)^2 + (0-0)^2} = \sqrt{a^2} = a \][/tex]
So, the correct option is:
A. [tex]\( \sqrt{(a-0)^2+(0-0)^2} = \sqrt{a^2} = a \)[/tex]
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
In this problem, Miguel wants to find the distance between points [tex]\( A \)[/tex] and [tex]\( B \)[/tex]. The coordinates of point [tex]\( A \)[/tex] are [tex]\((0,0)\)[/tex] and the coordinates of point [tex]\( B \)[/tex] are [tex]\((a,0)\)[/tex].
Now, let's apply these coordinates to the distance formula:
- [tex]\( x_1 = 0 \)[/tex]
- [tex]\( y_1 = 0 \)[/tex]
- [tex]\( x_2 = a \)[/tex]
- [tex]\( y_2 = 0 \)[/tex]
Substitute the coordinates into the formula:
[tex]\[ \text{Distance} = \sqrt{(a - 0)^2 + (0 - 0)^2} \][/tex]
Simplify the expression inside the square root:
[tex]\[ \text{Distance} = \sqrt{a^2 + 0^2} \][/tex]
Since [tex]\( 0^2 = 0 \)[/tex], the expression simplifies to:
[tex]\[ \text{Distance} = \sqrt{a^2} \][/tex]
Finally, the square root of [tex]\( a^2 \)[/tex] is [tex]\( a \)[/tex] (assuming [tex]\( a \)[/tex] is non-negative):
[tex]\[ \text{Distance} = a \][/tex]
Thus, the formula Miguel can use to determine the distance from point [tex]\( A \)[/tex] to point [tex]\( B \)[/tex] is:
[tex]\[ \sqrt{(a-0)^2 + (0-0)^2} = \sqrt{a^2} = a \][/tex]
So, the correct option is:
A. [tex]\( \sqrt{(a-0)^2+(0-0)^2} = \sqrt{a^2} = a \)[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.