Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Solve the following quadratic equation:

[tex]\[x^2 + (a + b)x + ab = 0\][/tex]

a) [tex]\[x^2 - 9x + 8 = 0\][/tex]


Sagot :

To solve the quadratic equation [tex]\( x^2 - 9x + 8 = 0 \)[/tex] using the form [tex]\( x^2 + (a + b)x + ab = 0 \)[/tex], follow these steps:

1. Identify the coefficients in the given quadratic equation:

The given quadratic equation is:
[tex]\[ x^2 - 9x + 8 = 0 \][/tex]

By comparing it with the standard form [tex]\( x^2 + (a + b)x + ab = 0 \)[/tex], we can identify that:
[tex]\[ a + b = 9 \][/tex]
[tex]\[ ab = 8 \][/tex]

2. Formulate the system of equations:

We now have the following system of equations:
[tex]\[ a + b = 9 \][/tex]
[tex]\[ ab = 8 \][/tex]

3. Solve the system of equations:

To solve this system, we need to find the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that satisfy both equations simultaneously.

4. Determine the pair values:

One pair of values that satisfy these equations is [tex]\( a = 1 \)[/tex] and [tex]\( b = 8 \)[/tex]:
[tex]\[ a + b = 1 + 8 = 9 \][/tex]
[tex]\[ ab = 1 \times 8 = 8 \][/tex]

Another pair of values that satisfy the equations is [tex]\( a = 8 \)[/tex] and [tex]\( b = 1 \)[/tex]:
[tex]\[ a + b = 8 + 1 = 9 \][/tex]
[tex]\[ ab = 8 \times 1 = 8 \][/tex]

Therefore, the solutions to the system of equations are:

[tex]\[ (a, b) = (1, 8) \quad \text{or} \quad (a, b) = (8, 1) \][/tex]