Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the enthalpy of formation ([tex]\(\Delta H_f\)[/tex]) for [tex]\(O_2(g)\)[/tex] in the given reaction, let's go through the steps systematically.
### Given
- Enthalpy of formation of glucose ([tex]\(C_6H_{12}O_6(s)\)[/tex]) = [tex]\(-1273.02 \, \text{kJ/mol}\)[/tex]
- Enthalpy of formation of carbon dioxide ([tex]\(CO_2(g)\)[/tex]) = [tex]\(-393.5 \, \text{kJ/mol}\)[/tex]
- Enthalpy of formation of water ([tex]\(H_2O(l)\)[/tex]) = [tex]\(-285.83 \, \text{kJ/mol}\)[/tex]
The reaction is:
[tex]\[ C_6H_{12}O_6(s) + 6 O_2(g) \rightarrow 6 CO_2(g) + 6 H_2O(l) \][/tex]
### Formula
The enthalpy change of the reaction ([tex]\(\Delta H_{reaction}\)[/tex]) can be calculated using the formula:
[tex]\[ \Delta H_{reaction} = \sum \Delta H_f(\text{products}) - \sum \Delta H_f(\text{reactants}) \][/tex]
### Breakdown
For the given reaction:
Products:
- 6 moles of [tex]\(CO_2(g)\)[/tex]
- 6 moles of [tex]\(H_2O(l)\)[/tex]
Reactants:
- 1 mole of [tex]\(C_6H_{12}O_6(s)\)[/tex]
- 6 moles of [tex]\(O_2(g)\)[/tex]
### Calculation
Let's use the formula to find [tex]\(\Delta H_{reaction}\)[/tex]:
Step 1: Calculate [tex]\(\sum \Delta H_f(\text{products})\)[/tex]:
[tex]\[ \sum \Delta H_f(\text{products}) = 6 \times \Delta H_f(CO_2(g)) + 6 \times \Delta H_f(H_2O(l)) \][/tex]
[tex]\[ \sum \Delta H_f(\text{products}) = 6 \times (-393.5 \, \text{kJ/mol}) + 6 \times (-285.83 \, \text{kJ/mol}) \][/tex]
[tex]\[ \sum \Delta H_f(\text{products}) = -2361 \, \text{kJ} + (-1714.98 \, \text{kJ}) \][/tex]
[tex]\[ \sum \Delta H_f(\text{products}) = -4075.98 \, \text{kJ/mol} \][/tex]
Step 2: Calculate [tex]\(\sum \Delta H_f(\text{reactants})\)[/tex]:
[tex]\[ \sum \Delta H_f(\text{reactants}) = \Delta H_f(C_6H_{12}O_6(s)) + 6 \times \Delta H_f(O_2(g)) \][/tex]
[tex]\[ \sum \Delta H_f(\text{reactants}) = -1273.02 \, \text{kJ/mol} + 6 \times \Delta H_f(O_2(g)) \][/tex]
Using the fact that elemental oxygen ([tex]\(O_2(g)\)[/tex]) in its standard state has an enthalpy of formation of [tex]\(0 \, \text{kJ/mol}\)[/tex]:
### Conclusion
Therefore, the enthalpy of formation [tex]\(\Delta H_f\)[/tex] for [tex]\(O_2(g)\)[/tex] is:
[tex]\[ \Delta H_f(O_2(g)) = 0 \, \text{kJ/mol} \][/tex]
Hence, the correct answer is:
- [tex]\(\boxed{0 \, \text{kJ/mol}}\)[/tex]
### Given
- Enthalpy of formation of glucose ([tex]\(C_6H_{12}O_6(s)\)[/tex]) = [tex]\(-1273.02 \, \text{kJ/mol}\)[/tex]
- Enthalpy of formation of carbon dioxide ([tex]\(CO_2(g)\)[/tex]) = [tex]\(-393.5 \, \text{kJ/mol}\)[/tex]
- Enthalpy of formation of water ([tex]\(H_2O(l)\)[/tex]) = [tex]\(-285.83 \, \text{kJ/mol}\)[/tex]
The reaction is:
[tex]\[ C_6H_{12}O_6(s) + 6 O_2(g) \rightarrow 6 CO_2(g) + 6 H_2O(l) \][/tex]
### Formula
The enthalpy change of the reaction ([tex]\(\Delta H_{reaction}\)[/tex]) can be calculated using the formula:
[tex]\[ \Delta H_{reaction} = \sum \Delta H_f(\text{products}) - \sum \Delta H_f(\text{reactants}) \][/tex]
### Breakdown
For the given reaction:
Products:
- 6 moles of [tex]\(CO_2(g)\)[/tex]
- 6 moles of [tex]\(H_2O(l)\)[/tex]
Reactants:
- 1 mole of [tex]\(C_6H_{12}O_6(s)\)[/tex]
- 6 moles of [tex]\(O_2(g)\)[/tex]
### Calculation
Let's use the formula to find [tex]\(\Delta H_{reaction}\)[/tex]:
Step 1: Calculate [tex]\(\sum \Delta H_f(\text{products})\)[/tex]:
[tex]\[ \sum \Delta H_f(\text{products}) = 6 \times \Delta H_f(CO_2(g)) + 6 \times \Delta H_f(H_2O(l)) \][/tex]
[tex]\[ \sum \Delta H_f(\text{products}) = 6 \times (-393.5 \, \text{kJ/mol}) + 6 \times (-285.83 \, \text{kJ/mol}) \][/tex]
[tex]\[ \sum \Delta H_f(\text{products}) = -2361 \, \text{kJ} + (-1714.98 \, \text{kJ}) \][/tex]
[tex]\[ \sum \Delta H_f(\text{products}) = -4075.98 \, \text{kJ/mol} \][/tex]
Step 2: Calculate [tex]\(\sum \Delta H_f(\text{reactants})\)[/tex]:
[tex]\[ \sum \Delta H_f(\text{reactants}) = \Delta H_f(C_6H_{12}O_6(s)) + 6 \times \Delta H_f(O_2(g)) \][/tex]
[tex]\[ \sum \Delta H_f(\text{reactants}) = -1273.02 \, \text{kJ/mol} + 6 \times \Delta H_f(O_2(g)) \][/tex]
Using the fact that elemental oxygen ([tex]\(O_2(g)\)[/tex]) in its standard state has an enthalpy of formation of [tex]\(0 \, \text{kJ/mol}\)[/tex]:
### Conclusion
Therefore, the enthalpy of formation [tex]\(\Delta H_f\)[/tex] for [tex]\(O_2(g)\)[/tex] is:
[tex]\[ \Delta H_f(O_2(g)) = 0 \, \text{kJ/mol} \][/tex]
Hence, the correct answer is:
- [tex]\(\boxed{0 \, \text{kJ/mol}}\)[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.