Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the enthalpy of formation ([tex]\(\Delta H_f\)[/tex]) for [tex]\(O_2(g)\)[/tex] in the given reaction, let's go through the steps systematically.
### Given
- Enthalpy of formation of glucose ([tex]\(C_6H_{12}O_6(s)\)[/tex]) = [tex]\(-1273.02 \, \text{kJ/mol}\)[/tex]
- Enthalpy of formation of carbon dioxide ([tex]\(CO_2(g)\)[/tex]) = [tex]\(-393.5 \, \text{kJ/mol}\)[/tex]
- Enthalpy of formation of water ([tex]\(H_2O(l)\)[/tex]) = [tex]\(-285.83 \, \text{kJ/mol}\)[/tex]
The reaction is:
[tex]\[ C_6H_{12}O_6(s) + 6 O_2(g) \rightarrow 6 CO_2(g) + 6 H_2O(l) \][/tex]
### Formula
The enthalpy change of the reaction ([tex]\(\Delta H_{reaction}\)[/tex]) can be calculated using the formula:
[tex]\[ \Delta H_{reaction} = \sum \Delta H_f(\text{products}) - \sum \Delta H_f(\text{reactants}) \][/tex]
### Breakdown
For the given reaction:
Products:
- 6 moles of [tex]\(CO_2(g)\)[/tex]
- 6 moles of [tex]\(H_2O(l)\)[/tex]
Reactants:
- 1 mole of [tex]\(C_6H_{12}O_6(s)\)[/tex]
- 6 moles of [tex]\(O_2(g)\)[/tex]
### Calculation
Let's use the formula to find [tex]\(\Delta H_{reaction}\)[/tex]:
Step 1: Calculate [tex]\(\sum \Delta H_f(\text{products})\)[/tex]:
[tex]\[ \sum \Delta H_f(\text{products}) = 6 \times \Delta H_f(CO_2(g)) + 6 \times \Delta H_f(H_2O(l)) \][/tex]
[tex]\[ \sum \Delta H_f(\text{products}) = 6 \times (-393.5 \, \text{kJ/mol}) + 6 \times (-285.83 \, \text{kJ/mol}) \][/tex]
[tex]\[ \sum \Delta H_f(\text{products}) = -2361 \, \text{kJ} + (-1714.98 \, \text{kJ}) \][/tex]
[tex]\[ \sum \Delta H_f(\text{products}) = -4075.98 \, \text{kJ/mol} \][/tex]
Step 2: Calculate [tex]\(\sum \Delta H_f(\text{reactants})\)[/tex]:
[tex]\[ \sum \Delta H_f(\text{reactants}) = \Delta H_f(C_6H_{12}O_6(s)) + 6 \times \Delta H_f(O_2(g)) \][/tex]
[tex]\[ \sum \Delta H_f(\text{reactants}) = -1273.02 \, \text{kJ/mol} + 6 \times \Delta H_f(O_2(g)) \][/tex]
Using the fact that elemental oxygen ([tex]\(O_2(g)\)[/tex]) in its standard state has an enthalpy of formation of [tex]\(0 \, \text{kJ/mol}\)[/tex]:
### Conclusion
Therefore, the enthalpy of formation [tex]\(\Delta H_f\)[/tex] for [tex]\(O_2(g)\)[/tex] is:
[tex]\[ \Delta H_f(O_2(g)) = 0 \, \text{kJ/mol} \][/tex]
Hence, the correct answer is:
- [tex]\(\boxed{0 \, \text{kJ/mol}}\)[/tex]
### Given
- Enthalpy of formation of glucose ([tex]\(C_6H_{12}O_6(s)\)[/tex]) = [tex]\(-1273.02 \, \text{kJ/mol}\)[/tex]
- Enthalpy of formation of carbon dioxide ([tex]\(CO_2(g)\)[/tex]) = [tex]\(-393.5 \, \text{kJ/mol}\)[/tex]
- Enthalpy of formation of water ([tex]\(H_2O(l)\)[/tex]) = [tex]\(-285.83 \, \text{kJ/mol}\)[/tex]
The reaction is:
[tex]\[ C_6H_{12}O_6(s) + 6 O_2(g) \rightarrow 6 CO_2(g) + 6 H_2O(l) \][/tex]
### Formula
The enthalpy change of the reaction ([tex]\(\Delta H_{reaction}\)[/tex]) can be calculated using the formula:
[tex]\[ \Delta H_{reaction} = \sum \Delta H_f(\text{products}) - \sum \Delta H_f(\text{reactants}) \][/tex]
### Breakdown
For the given reaction:
Products:
- 6 moles of [tex]\(CO_2(g)\)[/tex]
- 6 moles of [tex]\(H_2O(l)\)[/tex]
Reactants:
- 1 mole of [tex]\(C_6H_{12}O_6(s)\)[/tex]
- 6 moles of [tex]\(O_2(g)\)[/tex]
### Calculation
Let's use the formula to find [tex]\(\Delta H_{reaction}\)[/tex]:
Step 1: Calculate [tex]\(\sum \Delta H_f(\text{products})\)[/tex]:
[tex]\[ \sum \Delta H_f(\text{products}) = 6 \times \Delta H_f(CO_2(g)) + 6 \times \Delta H_f(H_2O(l)) \][/tex]
[tex]\[ \sum \Delta H_f(\text{products}) = 6 \times (-393.5 \, \text{kJ/mol}) + 6 \times (-285.83 \, \text{kJ/mol}) \][/tex]
[tex]\[ \sum \Delta H_f(\text{products}) = -2361 \, \text{kJ} + (-1714.98 \, \text{kJ}) \][/tex]
[tex]\[ \sum \Delta H_f(\text{products}) = -4075.98 \, \text{kJ/mol} \][/tex]
Step 2: Calculate [tex]\(\sum \Delta H_f(\text{reactants})\)[/tex]:
[tex]\[ \sum \Delta H_f(\text{reactants}) = \Delta H_f(C_6H_{12}O_6(s)) + 6 \times \Delta H_f(O_2(g)) \][/tex]
[tex]\[ \sum \Delta H_f(\text{reactants}) = -1273.02 \, \text{kJ/mol} + 6 \times \Delta H_f(O_2(g)) \][/tex]
Using the fact that elemental oxygen ([tex]\(O_2(g)\)[/tex]) in its standard state has an enthalpy of formation of [tex]\(0 \, \text{kJ/mol}\)[/tex]:
### Conclusion
Therefore, the enthalpy of formation [tex]\(\Delta H_f\)[/tex] for [tex]\(O_2(g)\)[/tex] is:
[tex]\[ \Delta H_f(O_2(g)) = 0 \, \text{kJ/mol} \][/tex]
Hence, the correct answer is:
- [tex]\(\boxed{0 \, \text{kJ/mol}}\)[/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.