Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To estimate the mean height of the students, we need to follow these steps:
1. Identify the height intervals and their corresponding frequencies:
- Height [tex]\( 120 < x \leq 130 \)[/tex]: Frequency = 5
- Height [tex]\( 130 < x \leq 140 \)[/tex]: Frequency = 12
- Height [tex]\( 140 < x \leq 150 \)[/tex]: Frequency = 3
2. Calculate the midpoint for each height interval:
- The midpoint for the interval [tex]\( 120 < x \leq 130 \)[/tex] is [tex]\( \frac{120 + 130}{2} = 125.0 \)[/tex].
- The midpoint for the interval [tex]\( 130 < x \leq 140 \)[/tex] is [tex]\( \frac{130 + 140}{2} = 135.0 \)[/tex].
- The midpoint for the interval [tex]\( 140 < x \leq 150 \)[/tex] is [tex]\( \frac{140 + 150}{2} = 145.0 \)[/tex].
3. Multiply each midpoint by its corresponding frequency to get the sum of products [tex]\( ( \text{midpoint} \times \text{frequency} ) \)[/tex]:
- For the interval [tex]\( 120 < x \leq 130 \)[/tex]: [tex]\( 125.0 \times 5 = 625.0 \)[/tex]
- For the interval [tex]\( 130 < x \leq 140 \)[/tex]: [tex]\( 135.0 \times 12 = 1620.0 \)[/tex]
- For the interval [tex]\( 140 < x \leq 150 \)[/tex]: [tex]\( 145.0 \times 3 = 435.0 \)[/tex]
4. Calculate the sum of these products:
Sum = [tex]\( 625.0 + 1620.0 + 435.0 = 2680.0 \)[/tex].
5. Calculate the total number of students (total frequency):
Total frequency = [tex]\( 5 + 12 + 3 = 20 \)[/tex] students.
6. Estimate the mean height by dividing the sum of the products by the total frequency:
Mean height = [tex]\( \frac{2680.0}{20} = 134.0 \)[/tex].
Therefore, the estimated mean height of the students is [tex]\( 134.0 \)[/tex] cm.
1. Identify the height intervals and their corresponding frequencies:
- Height [tex]\( 120 < x \leq 130 \)[/tex]: Frequency = 5
- Height [tex]\( 130 < x \leq 140 \)[/tex]: Frequency = 12
- Height [tex]\( 140 < x \leq 150 \)[/tex]: Frequency = 3
2. Calculate the midpoint for each height interval:
- The midpoint for the interval [tex]\( 120 < x \leq 130 \)[/tex] is [tex]\( \frac{120 + 130}{2} = 125.0 \)[/tex].
- The midpoint for the interval [tex]\( 130 < x \leq 140 \)[/tex] is [tex]\( \frac{130 + 140}{2} = 135.0 \)[/tex].
- The midpoint for the interval [tex]\( 140 < x \leq 150 \)[/tex] is [tex]\( \frac{140 + 150}{2} = 145.0 \)[/tex].
3. Multiply each midpoint by its corresponding frequency to get the sum of products [tex]\( ( \text{midpoint} \times \text{frequency} ) \)[/tex]:
- For the interval [tex]\( 120 < x \leq 130 \)[/tex]: [tex]\( 125.0 \times 5 = 625.0 \)[/tex]
- For the interval [tex]\( 130 < x \leq 140 \)[/tex]: [tex]\( 135.0 \times 12 = 1620.0 \)[/tex]
- For the interval [tex]\( 140 < x \leq 150 \)[/tex]: [tex]\( 145.0 \times 3 = 435.0 \)[/tex]
4. Calculate the sum of these products:
Sum = [tex]\( 625.0 + 1620.0 + 435.0 = 2680.0 \)[/tex].
5. Calculate the total number of students (total frequency):
Total frequency = [tex]\( 5 + 12 + 3 = 20 \)[/tex] students.
6. Estimate the mean height by dividing the sum of the products by the total frequency:
Mean height = [tex]\( \frac{2680.0}{20} = 134.0 \)[/tex].
Therefore, the estimated mean height of the students is [tex]\( 134.0 \)[/tex] cm.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.