Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the domain of the function [tex]\( H(w) = \frac{70}{w} \)[/tex], we need to identify the values of [tex]\( w \)[/tex] that make the function valid (i.e., [tex]\( H(w) \)[/tex] is defined).
The function [tex]\( H(w) = \frac{70}{w} \)[/tex] is a rational function, which is defined for all values of [tex]\( w \)[/tex] except those that make the denominator zero. Specifically, the function will be undefined if the denominator [tex]\( w \)[/tex] is zero, since division by zero is undefined in mathematics. Therefore, [tex]\( w \)[/tex] cannot be zero.
Thus, the function is defined for every other real number except zero. This means [tex]\( w \)[/tex] can be any positive or negative value, as long as it is not zero. However, negative widths do not make sense in the context of a physical rectangle's dimensions, given the height [tex]\( H(w) \)[/tex] relates to the width [tex]\( w \)[/tex] of a rectangle with a specified area.
In practical scenarios, we are only interested in positive values for width [tex]\( w \)[/tex] because a width, being a measurement in geometry, should be greater than zero.
Therefore, the domain of the function [tex]\( H(w) = \frac{70}{w} \)[/tex] in this context is all positive real numbers:
[tex]\[ w > 0 \][/tex]
Hence, the correct answer is:
C. [tex]\( w > 0 \)[/tex]
The function [tex]\( H(w) = \frac{70}{w} \)[/tex] is a rational function, which is defined for all values of [tex]\( w \)[/tex] except those that make the denominator zero. Specifically, the function will be undefined if the denominator [tex]\( w \)[/tex] is zero, since division by zero is undefined in mathematics. Therefore, [tex]\( w \)[/tex] cannot be zero.
Thus, the function is defined for every other real number except zero. This means [tex]\( w \)[/tex] can be any positive or negative value, as long as it is not zero. However, negative widths do not make sense in the context of a physical rectangle's dimensions, given the height [tex]\( H(w) \)[/tex] relates to the width [tex]\( w \)[/tex] of a rectangle with a specified area.
In practical scenarios, we are only interested in positive values for width [tex]\( w \)[/tex] because a width, being a measurement in geometry, should be greater than zero.
Therefore, the domain of the function [tex]\( H(w) = \frac{70}{w} \)[/tex] in this context is all positive real numbers:
[tex]\[ w > 0 \][/tex]
Hence, the correct answer is:
C. [tex]\( w > 0 \)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.