Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which ordered pair [tex]\((r, s)\)[/tex] is the solution to the system of equations:
[tex]\[ \begin{cases} 5r + 7s = 61 \\ -5r + 7s = -19 \end{cases} \][/tex]
we need to solve the system step-by-step.
1. Add the Equations:
[tex]\[ (5r + 7s) + (-5r + 7s) = 61 + (-19) \][/tex]
This simplifies to:
[tex]\[ 5r - 5r + 7s + 7s = 61 - 19 \][/tex]
[tex]\[ 14s = 42 \][/tex]
Solving for [tex]\(s\)[/tex]:
[tex]\[ s = \frac{42}{14} = 3 \][/tex]
2. Substitute [tex]\(s = 3\)[/tex] into the First Equation:
[tex]\[ 5r + 7(3) = 61 \][/tex]
Simplifying,
[tex]\[ 5r + 21 = 61 \][/tex]
[tex]\[ 5r = 61 - 21 \][/tex]
[tex]\[ 5r = 40 \][/tex]
Solving for [tex]\(r\)[/tex]:
[tex]\[ r = \frac{40}{5} = 8 \][/tex]
3. Solution Verification:
To ensure the solution is correct, substitute [tex]\(r = 8\)[/tex] and [tex]\(s = 3\)[/tex] into the second equation:
[tex]\[ -5(8) + 7(3) = -19 \][/tex]
Simplifying,
[tex]\[ -40 + 21 = -19 \][/tex]
The equation holds true.
Therefore, the solution to the system of equations is the ordered pair [tex]\((r, s) = (8, 3)\)[/tex].
To check which of the given ordered pairs fits our solution:
- [tex]\((1,8)\)[/tex] does not match [tex]\((8, 3)\)[/tex].
- [tex]\((3,8)\)[/tex] does not match [tex]\((8, 3)\)[/tex].
- [tex]\((1,-2)\)[/tex] does not match [tex]\((8, 3)\)[/tex].
- [tex]\((8,3)\)[/tex] matches perfectly.
Thus, the ordered pair [tex]\((r, s)\)[/tex] that is the solution to the given system of equations is [tex]\((8, 3)\)[/tex].
[tex]\[ \begin{cases} 5r + 7s = 61 \\ -5r + 7s = -19 \end{cases} \][/tex]
we need to solve the system step-by-step.
1. Add the Equations:
[tex]\[ (5r + 7s) + (-5r + 7s) = 61 + (-19) \][/tex]
This simplifies to:
[tex]\[ 5r - 5r + 7s + 7s = 61 - 19 \][/tex]
[tex]\[ 14s = 42 \][/tex]
Solving for [tex]\(s\)[/tex]:
[tex]\[ s = \frac{42}{14} = 3 \][/tex]
2. Substitute [tex]\(s = 3\)[/tex] into the First Equation:
[tex]\[ 5r + 7(3) = 61 \][/tex]
Simplifying,
[tex]\[ 5r + 21 = 61 \][/tex]
[tex]\[ 5r = 61 - 21 \][/tex]
[tex]\[ 5r = 40 \][/tex]
Solving for [tex]\(r\)[/tex]:
[tex]\[ r = \frac{40}{5} = 8 \][/tex]
3. Solution Verification:
To ensure the solution is correct, substitute [tex]\(r = 8\)[/tex] and [tex]\(s = 3\)[/tex] into the second equation:
[tex]\[ -5(8) + 7(3) = -19 \][/tex]
Simplifying,
[tex]\[ -40 + 21 = -19 \][/tex]
The equation holds true.
Therefore, the solution to the system of equations is the ordered pair [tex]\((r, s) = (8, 3)\)[/tex].
To check which of the given ordered pairs fits our solution:
- [tex]\((1,8)\)[/tex] does not match [tex]\((8, 3)\)[/tex].
- [tex]\((3,8)\)[/tex] does not match [tex]\((8, 3)\)[/tex].
- [tex]\((1,-2)\)[/tex] does not match [tex]\((8, 3)\)[/tex].
- [tex]\((8,3)\)[/tex] matches perfectly.
Thus, the ordered pair [tex]\((r, s)\)[/tex] that is the solution to the given system of equations is [tex]\((8, 3)\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.