Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which ordered pair [tex]\((r, s)\)[/tex] is the solution to the system of equations:
[tex]\[ \begin{cases} 5r + 7s = 61 \\ -5r + 7s = -19 \end{cases} \][/tex]
we need to solve the system step-by-step.
1. Add the Equations:
[tex]\[ (5r + 7s) + (-5r + 7s) = 61 + (-19) \][/tex]
This simplifies to:
[tex]\[ 5r - 5r + 7s + 7s = 61 - 19 \][/tex]
[tex]\[ 14s = 42 \][/tex]
Solving for [tex]\(s\)[/tex]:
[tex]\[ s = \frac{42}{14} = 3 \][/tex]
2. Substitute [tex]\(s = 3\)[/tex] into the First Equation:
[tex]\[ 5r + 7(3) = 61 \][/tex]
Simplifying,
[tex]\[ 5r + 21 = 61 \][/tex]
[tex]\[ 5r = 61 - 21 \][/tex]
[tex]\[ 5r = 40 \][/tex]
Solving for [tex]\(r\)[/tex]:
[tex]\[ r = \frac{40}{5} = 8 \][/tex]
3. Solution Verification:
To ensure the solution is correct, substitute [tex]\(r = 8\)[/tex] and [tex]\(s = 3\)[/tex] into the second equation:
[tex]\[ -5(8) + 7(3) = -19 \][/tex]
Simplifying,
[tex]\[ -40 + 21 = -19 \][/tex]
The equation holds true.
Therefore, the solution to the system of equations is the ordered pair [tex]\((r, s) = (8, 3)\)[/tex].
To check which of the given ordered pairs fits our solution:
- [tex]\((1,8)\)[/tex] does not match [tex]\((8, 3)\)[/tex].
- [tex]\((3,8)\)[/tex] does not match [tex]\((8, 3)\)[/tex].
- [tex]\((1,-2)\)[/tex] does not match [tex]\((8, 3)\)[/tex].
- [tex]\((8,3)\)[/tex] matches perfectly.
Thus, the ordered pair [tex]\((r, s)\)[/tex] that is the solution to the given system of equations is [tex]\((8, 3)\)[/tex].
[tex]\[ \begin{cases} 5r + 7s = 61 \\ -5r + 7s = -19 \end{cases} \][/tex]
we need to solve the system step-by-step.
1. Add the Equations:
[tex]\[ (5r + 7s) + (-5r + 7s) = 61 + (-19) \][/tex]
This simplifies to:
[tex]\[ 5r - 5r + 7s + 7s = 61 - 19 \][/tex]
[tex]\[ 14s = 42 \][/tex]
Solving for [tex]\(s\)[/tex]:
[tex]\[ s = \frac{42}{14} = 3 \][/tex]
2. Substitute [tex]\(s = 3\)[/tex] into the First Equation:
[tex]\[ 5r + 7(3) = 61 \][/tex]
Simplifying,
[tex]\[ 5r + 21 = 61 \][/tex]
[tex]\[ 5r = 61 - 21 \][/tex]
[tex]\[ 5r = 40 \][/tex]
Solving for [tex]\(r\)[/tex]:
[tex]\[ r = \frac{40}{5} = 8 \][/tex]
3. Solution Verification:
To ensure the solution is correct, substitute [tex]\(r = 8\)[/tex] and [tex]\(s = 3\)[/tex] into the second equation:
[tex]\[ -5(8) + 7(3) = -19 \][/tex]
Simplifying,
[tex]\[ -40 + 21 = -19 \][/tex]
The equation holds true.
Therefore, the solution to the system of equations is the ordered pair [tex]\((r, s) = (8, 3)\)[/tex].
To check which of the given ordered pairs fits our solution:
- [tex]\((1,8)\)[/tex] does not match [tex]\((8, 3)\)[/tex].
- [tex]\((3,8)\)[/tex] does not match [tex]\((8, 3)\)[/tex].
- [tex]\((1,-2)\)[/tex] does not match [tex]\((8, 3)\)[/tex].
- [tex]\((8,3)\)[/tex] matches perfectly.
Thus, the ordered pair [tex]\((r, s)\)[/tex] that is the solution to the given system of equations is [tex]\((8, 3)\)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.